Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Coupling Friction with Visual Appearance

Published: 27 September 2021 Publication History
  • Get Citation Alerts
  • Abstract

    We present a novel meso-scale model for computing anisotropic and asymmetric friction for contacts in rigid body simulations that is based on surface facet orientations. The main idea behind our approach is to compute a direction dependent friction coefficient that is determined by an object's roughness. Specifically, where the friction is dependent on asperity interlocking, but at a scale where surface roughness is also a visual characteristic of the surface. A GPU rendering pipeline is employed to rasterize surfaces using a shallow depth orthographic projection at each contact point in order to sample facet normal information from both surfaces, which we then combine to produce direction dependent friction coefficients that can be directly used in typical LCP contact solvers, such as the projected Gauss-Seidel method. We demonstrate our approach with a variety of rough textures, where the roughness is both visible in the rendering and in the motion produced by the physical simulation.

    Supplementary Material

    andrews (andrews.zip)
    Supplemental movie, appendix, image and software files for, Coupling Friction with Visual Appearance

    References

    [1]
    Jérémie Allard, François Faure, Hadrien Courtecuisse, Florent Falipou, Christian Duriez, and Paul G. Kry. 2010. Volume Contact Constraints at Arbitrary Resolution. ACM Trans. Graph. 29, 4, Article 82 (July 2010), 10 pages. https://doi.org/10.1145/1833349.1778819
    [2]
    Sheldon Andrews and Kenny Erleben. 2021. Contact and Friction Simulation for Computer Graphics. In ACM SIGGRAPH 2021 Courses (Virtual Event, USA) (SIGGRAPH '21). Association for Computing Machinery, New York, NY, USA, Article 2, 124 pages. https://doi.org/10.1145/3450508.3464571
    [3]
    David Baraff. 1994. Fast Contact Force Computation for Nonpenetrating Rigid Bodies. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '94). ACM, New York, NY, USA, 23--34. https://doi.org/10.1145/192161.192168
    [4]
    Jan Bender, Kenny Erleben, and Jeff Trinkle. 2014. Interactive Simulation of Rigid Body Dynamics in Computer Graphics. Computer Graphics Forum 33, 1 (2014), 246--270. https://doi.org/10.1111/cgf.12272
    [5]
    Frank Philip Bowden and David Tabor. 1950. The friction and lubrication of solids. Oxford: Clarendon Press; New York: Oxford University Press. https://doi.org/10.1119/1.1933017
    [6]
    Zhili Chen, Renguo Feng, and Huamin Wang. 2013. Modeling Friction and Air Effects Between Cloth and Deformable Bodies. ACM Trans. Graph. 32, 4, Article 88 (July 2013), 8 pages. https://doi.org/10.1145/2461912.2461941
    [7]
    Jonathan Cohen, Marc Olano, and Dinesh Manocha. 1998. Appearance-Preserving Simplification. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '98). Association for Computing Machinery, New York, NY, USA, 115--122. https://doi.org/10.1145/280814.280832
    [8]
    Antoine Costes, Fabien Danieau, Ferran Argelaguet, Anatole Lécuyer, and Philippe Guillotel. 2018. Haptic Material: A Holistic Approach for Haptic Texture Mapping. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications. Springer, 37--45.
    [9]
    Gilles Daviet. 2020. Simple and Scalable Frictional Contacts for Thin Nodal Objects. ACM Trans. Graph. 39, 4, Article 61 (July 2020), 16 pages. https://doi.org/10.1145/3386569.3392439
    [10]
    Gilles Daviet, Florence Bertails-Descoubes, and Laurence Boissieux. 2011. A hybrid iterative solver for robustly capturing coulomb friction in hair dynamics. ACM Trans. Graph. 30, 6, Article 139 (Dec. 2011), 12 pages. https://doi.org/10.1145/2070781.2024173
    [11]
    Keno Dreßel, Kenny Erleben, Paul G. Kry, and Sheldon Andrews. 2019. Automated Acquisition of Anisotropic Friction. In 16th Conference on Computer and Robot Vision (CRV 2019). 159--165. https://doi.org/10.1109/CRV.2019.00029
    [12]
    Kenny Erleben. 2007. Velocity-based Shock Propagation for Multibody Dynamics Animation. ACM Trans. Graph. 26, 2, Article 12 (June 2007), 20 pages. https://doi.org/10.1145/1243980.1243986
    [13]
    Kenny Erleben. 2017. Rigid Body Contact Problems Using Proximal Operators. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA '17). Association for Computing Machinery, New York, NY, USA, Article 13, 12 pages. https://doi.org/10.1145/3099564.3099575
    [14]
    Kenny Erleben, Miles Macklin, Sheldon Andrews, and Paul G. Kry. 2020. The Matchstick Model for Anisotropic Friction Cones. Computer Graphics Forum 39, 1 (Feb. 2020), 450--461. https://doi.org/10.1111/cgf.13885
    [15]
    Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski, and Stelian Coros. 2020. ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact. ACM Trans. Graph. 39, 6, Article 190 (Nov. 2020), 15 pages. https://doi.org/10.1145/3414685.3417766
    [16]
    Suresh Goyal, Andy Ruina, and Jim Papadopoulos. 1989. Limit Surface and Moment Function Descriptions of Planar Sliding. In Proc. of the 1989 IEEE International Conference on Robotics and Automation (Vol. 2). Scottsdale, AZ, 794--799. https://doi.org/10.1109/ROBOT.1989.100081
    [17]
    James A. Greenwood and J. B. P. Williamson. 1966. Contact of Nominally Flat Surfaces. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 295, 1442 (1966), 300--319. https://doi.org/10.1098/rspa.1966.0242
    [18]
    Danny M. Kaufman, Timothy Edmunds, and Dinesh K. Pai. 2005. Fast Frictional Dynamics for Rigid Bodies. ACM Trans. Graph. 24, 3 (July 2005), 946--956. https://doi.org/10.1145/1073204.1073295
    [19]
    Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. 2008. Staggered Projections for Frictional Contact in Multibody Systems. ACM Trans. Graph. 27, 5, Article 164 (Dec. 2008), 11 pages. https://doi.org/10.1145/1409060.1409117
    [20]
    Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential Contact: Intersection-and Inversion-Free, Large-Deformation Dynamics. ACM Trans. Graph. 39, 4, Article 49 (July 2020), 20 pages. https://doi.org/10.1145/3386569.3392425
    [21]
    Martha Liley, Delphine Gourdon, Dimitrios Stamou, Ulrich Meseth, Thomas M. Fischer, Carsten Lautz, Henning Stahlberg, Horst Vogel, Nancy A. Burnham, and Claus Duschl. 1998. Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt. Science 280, 5361 (1998), 273--275. https://doi.org/10.1126/science.280.5361.273
    [22]
    Mickaël Ly, Jean Jouve, Laurence Boissieux, and Florence Bertails-Descoubes. 2020. Projective Dynamics with Dry Frictional Contact. ACM Trans. Graph. 39, 4, Article 57 (July 2020), 8 pages. https://doi.org/10.1145/3386569.3392396
    [23]
    Miles Macklin, Kenny Erleben, Matthias Müller, Nuttapong Chentanez, Stefan Jeschke, and Viktor Makoviychuk. 2019. Non-Smooth Newton Methods for Deformable Multi-Body Dynamics. ACM Trans. Graph. 38, 5 (2019), 20.
    [24]
    Miguel A. Otaduy, Nitin Jain, Avneesh Sud, and Ming C. Lin. 2004. Haptic display of interaction between textured models. In IEEE Visualization 2004. IEEE, 297--304. https://doi.org/10.1109/VISUAL.2004.37
    [25]
    Miguel A. Otaduy, Rasmus Tamstorf, Denis Steinemann, and Markus Gross. 2009. Implicit Contact Handling for Deformable Objects. Computer Graphics Forum 28, 2 (2009), 559--568. https://doi.org/10.1111/j.1467-8659.2009.01396.x
    [26]
    Simon Pabst, Bernhard Thomaszewski, and Wolfgang Straßer. 2009. Anisotropic Friction for Deformable Surfaces and Solids. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (New Orleans, Louisiana) (SCA '09). ACM, New York, NY, USA, 149--154. https://doi.org/10.1145/1599470.1599490
    [27]
    Dinesh K. Pai, Kees van den Doel, Doug L. James, Jochen Lang, John E. Lloyd, Joshua L. Richmond, and Som H. Yau. 2001. Scanning Physical Interaction Behavior of 3D Objects. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01). ACM, New York, NY, USA, 87--96. https://doi.org/10.1145/383259.383268
    [28]
    Albert Peiret, Sheldon Andrews, József Kövecses, Paul G. Kry, and Marek Teichmann. 2019. Schur Complement-Based Substructuring of Stiff Multibody Systems with Contact. ACM Trans. Graph. 38, 5, Article 150 (Oct. 2019), 17 pages. https://doi.org/10.1145/3355621
    [29]
    Ernest Rabinowicz. 1995. Friction and Wear of Materials. Wiley.
    [30]
    Zhimin Ren, Hengchin Yeh, and Ming C Lin. 2010. Synthesizing contact sounds between textured models. In 2010 IEEE Virtual Reality Conference (VR). IEEE, 139--146. https://doi.org/10.1109/VR.2010.5444799
    [31]
    Shmuel M. Rubinstein, Gil Cohen, and Jay Fineberg. 2006. Contact Area Measurements Reveal Loading-History Dependence of Static Friction. Phys. Rev. Lett. 96 (Jun 2006), 256103. Issue 25. https://doi.org/10.1103/PhysRevLett.96.256103
    [32]
    Gang Sheng Chen and Xiandong Liu. 2016. Chapter 3 - Friction. In Friction Dynamics, Gang Sheng Chen and Xiandong Liu (Eds.). Woodhead Publishing, 91--159. https://doi.org/10.1016/B978-0-08-100285-8.00003-1
    [33]
    David E Stewart and Jeffrey C Trinkle. 1996. An Implicit Time-stepping Scheme for Rigid Body Dynamics with Inelastic Collisions and Coulomb Friction. Internat. J. Numer. Methods Engrg. 39, 15 (1996), 2673--2691. https://doi.org/10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I
    [34]
    Paul Umbanhowar, Thomas H. Vose, Atsushi Mitani, Shinichi Hirai, and Kevin M. Lynch. 2012. The effect of anisotropic friction on vibratory velocity fields. In 2012 IEEE International Conference on Robotics and Automation. 2584--2591. https://doi.org/10.1109/ICRA.2012.6225273
    [35]
    Antonis I. Vakis, Vladislav A. Yastrebov, Julien Scheibert, Lucia Nicola, Daniele Dini, Clotilde Minfray, Andreas Almqvist, Marco Paggi, Seunghwan Lee, Georges Limbert, Jean-François Molinari, Guillaume Anciaux, Ramin Aghababaei, Sebastián Echeverri Restrepo, Antonio Papangelo, Antonio Cammarata, Paolo Nicolini, Carmine Putignano, Giuseppe Carbone, Stanisław Stupkiewicz, Jakub Lengiewicz, Gianluca Costagliola, Federico Bosia, Roberto Guarino, Nicola M. Pugno, Martin H. Müser, and Michele Ciavarella. 2018. Modeling and simulation in tribology across scales: An overview. Tribology International 125 (2018), 169--199. https://doi.org/10.1016/j.triboint.2018.02.005
    [36]
    Kees van den Doel, Paul G. Kry, and Dinesh K. Pai. 2001. FoleyAutomatic: Physically-Based Sound Effects for Interactive Simulation and Animation. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01). Association for Computing Machinery, New York, NY, USA, 537--544. https://doi.org/10.1145/383259.383322
    [37]
    Simon V. Walker and Remco I. Leine. 2017. Anisotropic dry friction with non-convex force reservoirs: modeling and experiments. In 9th European Nonlinear Dynamics Conference (ENOC 2017). 1--7.
    [38]
    Chengjiao Yu and Q Jane Wang. 2012. Friction anisotropy with respect to topographic orientation. Scientific reports 2, 1 (2012), 1--6. https://doi.org/10.1038/srep00988

    Cited By

    View all
    • (2022)Contact and friction simulation for computer graphicsACM SIGGRAPH 2022 Courses10.1145/3532720.3535640(1-172)Online publication date: 2-Aug-2022

    Index Terms

    1. Coupling Friction with Visual Appearance

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Proceedings of the ACM on Computer Graphics and Interactive Techniques
      Proceedings of the ACM on Computer Graphics and Interactive Techniques  Volume 4, Issue 3
      September 2021
      268 pages
      EISSN:2577-6193
      DOI:10.1145/3488568
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 27 September 2021
      Published in PACMCGIT Volume 4, Issue 3

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. GPU techniques
      2. contact
      3. friction
      4. normal mapping
      5. physical simulation

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)25
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 10 Aug 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)Contact and friction simulation for computer graphicsACM SIGGRAPH 2022 Courses10.1145/3532720.3535640(1-172)Online publication date: 2-Aug-2022

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media