Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3484824.3484889acmotherconferencesArticle/Chapter ViewAbstractPublication PagesdsmlaiConference Proceedingsconference-collections
research-article

Object Detection using Deep Learning: A Review

Published: 13 January 2022 Publication History

Abstract

Object detection is one of the most critical and challenging tasks in computer vision. It is the process of finding objects belonging to some predefined categories and determining their location in an image or video. This paper reviews deep learning-based object detection models. The paper discusses some benchmark datasets. The performance evaluation of different detectors on different datasets based on mean Average Precision (mAP) is reviewed. Object detection is used in different fields in different forms. Applications of object detection like pedestrian detection, autonomous driving, face detection, etc., are presented. Finally, the future scope is discussed to work on new techniques for object detection.

References

[1]
Hao Zhang and Xianggong Hong. 2019. Recent progresses on object detection: a brief review. Multimed Tools Appl 78, 19 (October 2019), 27809--27847.
[2]
Licheng Jiao, Fan Zhang, Fang Liu, Shuyuan Yang, Lingling Li, Zhixi Feng, and Rong Qu. 2019. A Survey of Deep Learning-Based Object Detection. IEEE Access 7, (2019), 128837--128868.
[3]
P. Viola and M. Jones. 2001. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, IEEE Comput. Soc, Kauai, HI, USA, I-511-I-518.
[4]
Karanbir Singh Chahal and Kuntal Dey. 2018. A Survey of Modern Object Detection Literature using Deep Learning. arXiv:1808.07256 [cs] (August 2018). Retrieved March 2, 2021 from http://arxiv.org/abs/1808.07256
[5]
Zhengxia Zou, Zhenwei Shi, Yuhong Guo, and Jieping Ye. 2019. Object Detection in 20 Years: A Survey. arXiv:1905.05055 [cs] (May 2019). Retrieved March 2, 2021 from http://arxiv.org/abs/1905.05055
[6]
N. Dalal and B. Triggs. 2005. Histograms of Oriented Gradients for Human Detection. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), IEEE, San Diego, CA, USA, 886--893.
[7]
P F Felzenszwalb, R B Girshick, D McAllester, and D Ramanan. 2010. Object Detection with Discriminatively Trained Part-Based Models. IEEE Trans. Pattern Anal. Mach. Intell. 32, 9 (September 2010), 1627--1645.
[8]
Xiongwei Wu, Doyen Sahoo, and Steven C.H. Hoi. 2020. Recent advances in deep learning for object detection. Neurocomputing 396, (July 2020), 39--64.
[9]
Wang Zhiqiang and Liu Jun. A Review of Object Detection Based on Convolutional Neural Network. 6.
[10]
Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann LeCun. 2014. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. arXiv:1312.6229 [cs] (February 2014). Retrieved July 21, 2021 from http://arxiv.org/abs/1312.6229
[11]
Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, Columbus, OH, USA, 580--587.
[12]
Ross Girshick. 2015. Fast R-CNN. In 2015 IEEE International Conference on Computer Vision (ICCV), IEEE, Santiago, Chile, 1440--1448.
[13]
Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2017. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 6 (June 2017), 1137--1149.
[14]
Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2018. Mask R-CNN. arXiv:1703.06870 [cs] (January 2018). Retrieved July 21, 2021 from http://arxiv.org/abs/1703.06870
[15]
Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You Only Look Once: Unified, Real-Time Object Detection. arXiv:1506.02640 [cs] (May 2016). Retrieved July 21, 2021 from http://arxiv.org/abs/1506.02640
[16]
Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg. 2016. SSD: Single Shot MultiBox Detector. arXiv:1512.02325 [cs] 9905, (2016), 21--37.
[17]
Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alexander C. Berg. 2017. DSSD: Deconvolutional Single Shot Detector. arXiv:1701.06659 [cs] (January 2017). Retrieved July 21, 2021 from http://arxiv.org/abs/1701.06659
[18]
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2018. Focal Loss for Dense Object Detection. arXiv:1708.02002 [cs] (February 2018). Retrieved July 21, 2021 from http://arxiv.org/abs/1708.02002
[19]
Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman. 2010. The Pascal Visual Object Classes (VOC) Challenge. Int J Comput Vis 88, 2 (June 2010), 303--338.
[20]
Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. 2015. Microsoft COCO: Common Objects in Context. arXiv:1405.0312 [cs] (February 2015). Retrieved July 21, 2021 from http://arxiv.org/abs/1405.0312
[21]
Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis 115, 3 (December 2015), 211--252.
[22]
Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig, and Vittorio Ferrari. 2020. The Open Images Dataset V4: Unified Image Classification, Object Detection, and Visual Relationship Detection at Scale. Int J Comput Vis 128, 7 (July 2020), 1956--1981.
[23]
Junwei Han, Dingwen Zhang, Gong Cheng, Nian Liu, and Dong Xu. 2018. Advanced Deep-Learning Techniques for Salient and Category-Specific Object Detection: A Survey. IEEE Signal Process. Mag. 35, 1 (January 2018), 84--100.
[24]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2014. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. In Computer Vision - ECCV 2014, David Fleet, Tomas Pajdla, Bernt Schiele and Tinne Tuytelaars (eds.). Springer International Publishing, Cham, 346--361.
[25]
Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. 2016. R-FCN: Object Detection via Region-based Fully Convolutional Networks. arXiv:1605.06409 [cs] (June 2016). Retrieved July 21, 2021 from http://arxiv.org/abs/1605.06409
[26]
Zhong-Qiu Zhao, Peng Zheng, Shou-Tao Xu, and Xindong Wu. 2019. Object Detection With Deep Learning: A Review. IEEE Trans. Neural Netw. Learning Syst. 30, 11 (November 2019), 3212--3232.
[27]
Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. 2017. Feature Pyramid Networks for Object Detection. arXiv:1612.03144 [cs] (April 2017). Retrieved July 21, 2021 from http://arxiv.org/abs/1612.03144
[28]
Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and Matti Pietikäinen. 2020. Deep Learning for Generic Object Detection: A Survey. Int J Comput Vis 128, 2 (February 2020), 261--318.
[29]
Joseph Redmon and Ali Farhadi. 2016. YOLO9000: Better, Faster, Stronger. arXiv:1612.08242 [cs] (December 2016). Retrieved July 21, 2021 from http://arxiv.org/abs/1612.08242
[30]
Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement. arXiv:1804.02767 [cs] (April 2018). Retrieved July 21, 2021 from http://arxiv.org/abs/1804.02767
[31]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385 [cs] (December 2015). Retrieved July 21, 2021 from http://arxiv.org/abs/1512.03385
[32]
Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. 2020. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv:2004.10934 [cs, eess] (April 2020). Retrieved July 21, 2021 from http://arxiv.org/abs/2004.10934
[33]
Rafael Padilla, Sergio L. Netto, and Eduardo A. B. da Silva. 2020. A Survey on Performance Metrics for Object-Detection Algorithms. In 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), IEEE, Niterói, Brazil, 237--242.
[34]
P. Dollar, C. Wojek, B. Schiele, and P. Perona. 2012. Pedestrian Detection: An Evaluation of the State of the Art. IEEE Trans. Pattern Anal. Mach. Intell. 34, 4 (April 2012), 743--761.
[35]
Liming Wang, Jianbo Shi, Gang Song, and I-fan Shen. 2007. Object Detection Combining Recognition and Segmentation. In Computer Vision - ACCV 2007, Yasushi Yagi, Sing Bing Kang, In So Kweon and Hongbin Zha (eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 189--199.

Cited By

View all
  • (2023)Adversarial Attacks and Defenses in Machine Learning-Empowered Communication Systems and Networks: A Contemporary SurveyIEEE Communications Surveys & Tutorials10.1109/COMST.2023.331949225:4(2245-2298)Online publication date: 26-Sep-2023
  • (2023)SAWIT: A small-sized animal wild image dataset with annotationsMultimedia Tools and Applications10.1007/s11042-023-16673-383:11(34083-34108)Online publication date: 25-Sep-2023
  • (2023)Feature enhancement modules applied to a feature pyramid network for object detectionPattern Analysis & Applications10.1007/s10044-023-01152-026:2(617-629)Online publication date: 16-Feb-2023
  • Show More Cited By

Index Terms

  1. Object Detection using Deep Learning: A Review
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Other conferences
        DSMLAI '21': Proceedings of the International Conference on Data Science, Machine Learning and Artificial Intelligence
        August 2021
        415 pages
        ISBN:9781450387637
        DOI:10.1145/3484824
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 13 January 2022

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. Benchmark Datasets
        2. Deep Learning Performance Evaluation
        3. Object Detection

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Funding Sources

        Conference

        DSMLAI '21'

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)53
        • Downloads (Last 6 weeks)1
        Reflects downloads up to 02 Feb 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2023)Adversarial Attacks and Defenses in Machine Learning-Empowered Communication Systems and Networks: A Contemporary SurveyIEEE Communications Surveys & Tutorials10.1109/COMST.2023.331949225:4(2245-2298)Online publication date: 26-Sep-2023
        • (2023)SAWIT: A small-sized animal wild image dataset with annotationsMultimedia Tools and Applications10.1007/s11042-023-16673-383:11(34083-34108)Online publication date: 25-Sep-2023
        • (2023)Feature enhancement modules applied to a feature pyramid network for object detectionPattern Analysis & Applications10.1007/s10044-023-01152-026:2(617-629)Online publication date: 16-Feb-2023
        • (2022)Contrastive Research on Performance of Face Detection based on Classical and Deep Learning Algorithms2022 International Applied Computational Electromagnetics Society Symposium (ACES-China)10.1109/ACES-China56081.2022.10064747(1-4)Online publication date: 9-Dec-2022

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media