Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3487553.3524676acmconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
short-paper

Beyond Reproduction, Experiments want to be Understood

Published: 16 August 2022 Publication History

Abstract

The content of experiments must be semantically described. This topic has already been largely covered. However, some neglected benefits of such an approach provide more arguments in favour of scientific knowledge graphs. Beyond being searchable through flat metadata, a knowledge graph of experiment descriptions may be able to provide answers to scientific and methodological questions. This includes identifying non experimented conditions or retrieving specific techniques used in experiments. In turn, this is useful for researchers as this information can be used for repurposing experiments, checking claimed results or performing meta-analyses.

References

[1]
Sören Auer, Viktor Kovtun, Manuel Prinz, Anna Kasprzik, Markus Stocker, and Maria-Esther Vidal. 2018. Towards a Knowledge Graph for Science. In Proc. 8th International Conference on Web Intelligence, Mining and Semantics (WIMS), Novi Sad (RS). ACM press, 1:1–1:6. https://doi.org/10.1145/3227609.3227689
[2]
Boyan Brodaric and Mark Gahegan. 2010. Ontology use for semantic e-Science. Semantic Web 1, 1-2 (2010), 149–153. https://doi.org/10.3233/SW-2010-0021
[3]
Cristina-Iulia Bucur, Tobias Kuhn, Davide Ceolin, and Jacco van Ossenbruggen. 2021. Expressing High-Level Scientific Claims with Formal Semantics. In Proc. 11th International Conference on Knowledge Capture (K-Cap), Online. ACM press, 233–240. https://doi.org/10.1145/3460210.3493561
[4]
Christopher Chambers, Birte Forstmann, and Andrew Pruszynski. 2018. Science in flux: Registered reports and beyond at the European Journal of Neuroscience. European Journal of Neuroscience 49, 1 (2018), 4–5. https://doi.org/10.1111/ejn.14319
[5]
Paolo Ciccarese, David Shotton, Silvio Peroni, and Tim Clark. 2014. CiTO + SWAN: The web semantics of bibliographic records, citations, evidence and discourse relationships. Semantic Web 5, 4 (2014), 295–311. https://doi.org/10.3233/SW-130098
[6]
Tim Clark, Paolo Ciccarese, and Carole Goble. 2014. Micropublications: a semantic model for claims, evidence, arguments and annotations in biomedical communications. Journal of biomedical semantics 5, 28 (2014). https://doi.org/10.1186/2041-1480-5-28
[7]
Michel Dumontier. 2010. Building an effective Semantic Web for health care and the life sciences. Semantic Web 1, 1-2 (2010), 131–135. https://doi.org/10.3233/SW-2010-0018
[8]
Jérôme Euzenat. 1995. Building consensual knowledge bases: context and architecture. In Towards very large knowledge bases, Nicolaas Mars (Ed.). IOS press, Amsterdam (NL), 143–155.
[9]
Daniel Garijo, Yolanda Gil, and Varun Ratnakar. 2017. The DISK Hypothesis Ontology: Capturing Hypothesis Evolution for Automated Discovery. In Proc. Workshops and Tutorials of the 9th International Conference on Knowledge Capture (K-CAP), Austin (TX US)(CEUR Workshop Proceedings, Vol. 2065), Ilaria Tiddi, Giuseppe Rizzo, and Óscar Corcho (Eds.). CEUR-WS.org, 40–46. http://ceur-ws.org/Vol-2065/paper08.pdf
[10]
Yolanda Gil, Daniel Garijo, Varun Ratnakar, Rajiv Mayani, Ravali Adusumilli, Hunter Boyce, Arunima Srivastava, and Parag Mallick. 2017. Towards Continuous Scientific Data Analysis and Hypothesis Evolution. In Proc. 31st Conference on Artificial Intelligence (AAAI), San Francisco (CA US). AAAI Press, 4406–4414.
[11]
Olga Giraldo, Alexander Garcia, Federico Lopez, and Oscar Corcho. 2017. Using semantics for representing experimental protocols. Journal of Biomedical Semantics 8 (2017), 52. https://doi.org/10.1186/s13326-017-0160-y
[12]
Paul Groth, Andrew Gibson, and Jan Velterop. 2010. The anatomy of a nanopublication. Information services & use 30, 1-2 (2010), 51–56.
[13]
Yusuf Hannun. 2021. Build a registry of results that students can replicate. Nature 600(2021), 751. https://doi.org/10.1038/d41586-021-03707-9
[14]
Kristina Hettne, Harish Dharuri, Jun Zhao, Katherine Wolstencroft, Khalid Belhajjame, Stian Soiland-Reyes, Eleni Mina, Mark Thompson, Don Cruickshank, Lourdes Verdes Montene gro, Julian Garrido, David de Roure, Oscar Corcho, Graham Klyne, Reinout van Schouwen, Peter ‘t Hoen, Sean Bechhofer, Carole Goble, and Marco Roos. 2014. Structuring research methods and data with the research object model: genomics workflows as a case study. Journal of biomedical semantics 5, 1 (2014), 41. https://doi.org/10.1186/2041-1480-5-41
[15]
Michael Hewera, Daniel Hänggi, Björn Gerlach, and Ulf Dietrich Kahlert. 2021. eLabFTW as an Open Science tool to improve the quality and translation of preclinical research. F1000Research 10(2021), 292. https://doi.org/10.12688/f1000research.52157.3
[16]
Wei Hu, Honglei Qiu, JiaCheng Huang, and Michel Dumontier. 2017. BioSearch: a semantic search engine for Bio2RDF. Database 2017(2017), bax059. https://doi.org/10.1093/database/bax059
[17]
IFLA Study Group on the Functional Requirements for Bibliographic Records. 2009. Functional Requirements for Bibliographic Records: Final Report. Report 19. IFLA. https://www.w3.org/TR/prov-o/
[18]
Mohamad Yaser Jaradeh, Allard Oelen, Kheir Eddine Farfar, Manuel Prinz, Jennifer D’Souza, Gábor Kismihók, Markus Stocker, and Sören Auer. 2019. Open Research Knowledge Graph: Next Generation Infrastructure for Semantic Scholarly Knowledge. In Proc. 10th International Conference on Knowledge Capture (K-Cap), Marina Del Rey (US). 243–246. https://doi.org/10.1145/3360901.3364435
[19]
Timothy Lebo, Satya Sahoo, and Deborah McGuinness (eds.). 2013. PROV-O: The PROV Ontology. Recommendation. W3C. https://www.w3.org/TR/prov-o/
[20]
Adeeb Noor, Abdullah Assiri, Serkan Ayvaz, Connor Clark, and Michel Dumontier. 2017. Drug-drug interaction discovery and demystification using Semantic Web technologies. Journal of the American Medical Informatics Association 24, 3(2017), 556–564. https://doi.org/10.1093/jamia/ocw128
[21]
Natasha Noy. 2018. Making it easier to discover datasets. https://www.blog.google/products/search/making-it-easier-discover-datasets/
[22]
Nathan Rollins, Michael Barton, Sean Bergin, Marco Janssen, and Allen Lee. 2014. A Computational Model Library for publishing model documentation and code. Environmental modelling and software 61, 4 (2014), 59–64. https://doi.org/10.1016/j.envsoft.2014.06.022
[23]
Susanna-Assunta Sansone, Peter McQuilton, Philippe Rocca-Serra, Alejandra Gonzalez-Beltran, Massimiliano Izzo, Allyson Lister, and Milo Thurston. 2019. FAIRsharing as a community approach to standards, repositories and policies. Nature biotechnology 37, 4 (2019), 358–367. https://doi.org/10.1038/s41587-019-0080-8
[24]
Larisa Soldatova and Ross King. 2006. An ontology of scientific experiments. Journal of the Royal Society Interface 3, 11 (2006), 795–803. https://doi.org/10.1098/rsif.2006.0134
[25]
Markus Stocker, Manuel Prinz, Fatemeh Rostami, and Tibor Kempf. 2018. Towards research infrastructures that curate scientific information: A use case in life sciences. In Proc. 13th International Conference on Data Integration in the Life Sciences (DILS), Hannover (DE)(Lecture Notes in Computer Science, Vol. 11371). Springer, 61–74. https://doi.org/10.1007/978-3-030-06016-9_6
[26]
Mark Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip Bourne, Jildau Bouwman, Anthony Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris Evelo, Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair Gray, Paul Groth, Carole Goble, Jeffrey Grethe, Jaap Heringa, Peter ’t Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott Lusher, Maryann Martone, Albert Mons, Abel Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene van Schaik, Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag, Ted Slater, George Strawn, Morris Swertz, Mark Thompson, Johan van der Lei, Erik van Mulligen, Jan Velterop, Andra Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun Zhao, and Barend Mons. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific data 3(2016), 18. https://doi.org/10.1038/sdata.2016.18

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WWW '22: Companion Proceedings of the Web Conference 2022
April 2022
1338 pages
ISBN:9781450391306
DOI:10.1145/3487553
Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 16 August 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. e-science
  2. scientific knowledge graphs
  3. semantic experiment description
  4. semantic technologies

Qualifiers

  • Short-paper
  • Research
  • Refereed limited

Funding Sources

Conference

WWW '22
Sponsor:
WWW '22: The ACM Web Conference 2022
April 25 - 29, 2022
Virtual Event, Lyon, France

Acceptance Rates

Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 51
    Total Downloads
  • Downloads (Last 12 months)20
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Oct 2024

Other Metrics

Citations

Cited By

View all

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media