Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Wi-Fruit: See Through Fruits with Smart Devices

Published: 30 December 2021 Publication History

Abstract

People usually assess fruit qualities from external features such as color, shape, size, and texture. However, it is quite common that we select fruits with perfect appearances but rotten inside, especially for fruits with thick pericarps. Thus the accurate measurement is desirable to evaluate the internal conditions of fruits. As two key features of fruit internal qualities, existing methods on measuring fruit moisture and soluble solid contents (SSC) are either destructive or costly, limiting their adoption in daily life. In this paper, we propose Wi-Fruit, a non-destructive and low-cost fruit moisture and SSC measurement system leveraging Wi-Fi channel state information (CSI). First, to cope with the fruit structure dependency challenge, we propose a double-quotient model to pre-process CSI on adjacent antennas. Second, to address the fruit size and type dependency challenges, a lightweight artificial neural network (ANN) model with visual information fusion is proposed for fruit moisture and SSC estimations. Extensive evaluations are conducted on 6 types of fruits with both thick (i.e., watermelon and grapefruit) and thin pericarps (i.e., dragon fruit, apple, pear, and orange) over a month in either an empty laboratory room or a library with massive books. Results demonstrate that Wi-Fruit achieves an acceptable estimation accuracy (RMSE=0.319). It is independent of various fruit structures, sizes, and types, while also robust to time and environmental changes. The fruit internal sensing capabilities of Wi-Fruit can help fruit saving and safety in both pre-harvest and post-harvest applications.

References

[1]
2021 is the international year of fruits and vegetables, food and agriculture organization (fao), http://www.fao.org/food-loss-reduction/news/detail/en/c/1362525/ (2021).
[2]
CUBII, Global food waste statistics 2020, https://cubii.co/en/global-food-waste-statistics-2020/ (Aug. 2020).
[3]
U. E. Programme, Worldwide food waste, https://www.unep.org/thinkeatsave/get-informed/worldwide-food-waste.
[4]
B. M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, J. Lammertyn, Nondestructive measurement of fruit and vegetable quality by means of nir spectroscopy: A review, Postharvest biology and technology 46 (2) (2007) 99--118.
[5]
H. Patel, R. Prajapati, M. Patel, Detection of quality in orange fruit image using svm classifier, in: ICOEI, IEEE, 2019, pp. 74--78.
[6]
P. Bergmann, M. Fauser, D. Sattlegger, C. Steger, Mvtec ad-a comprehensive real-world dataset for unsupervised anomaly detection, in: CVPR, IEEE, 2019, pp. 9592--9600.
[7]
N. Khalid, A. Abdullah, S. Shukor, F. S. AS, H. Mansor, N. Dalila, Non-destructive technique based on specific gravity for post-harvest mangifera indica l. cultivar maturity, in: AMS, IEEE, 2017, pp. 113--117.
[8]
K. Roy, S. S. Chaudhuri, S. Bhattacharjee, S. Manna, T. Chakraborty, Segmentation techniques for rotten fruit detection, in: Optronix, IEEE, 2019, pp. 1--4.
[9]
STELZNER, Fruit penetrometer, https://pronova.de/en/products/agricultural-measuring/fruit-analysis/804.
[10]
Jacks jk-100r penetrometer moisture analyzer, https://www.chem17.com/product/detail/28186372.html.
[11]
Yamato adp-31 vaccum oven, https://www.idealvac.com/files/brochures/yamatovacuumovenadp21_31.pdf.
[12]
Mileseey sm20 ssc analyzer, http://www.mileseey.com/ProductCenter/ProductCenterList1034/.
[13]
Atago pallete pr101 ssc analyzer, https://www.instrument.com.cn/netshow/SH102225/C161297.htm.
[14]
W. Jiang, G. Marini, N. van Berkel, Z. Sarsenbayeva, Z. Tan, C. Luo, X. He, T. Dingler, J. Goncalves, Y. Kawahara, et al., Probing sucrose contents in everyday drinks using miniaturized near-infrared spectroscopy scanners, IMWUT 3 (4) (2019) 1--25.
[15]
Asd labspec 4 hi-res analytical instrument, https://www.malvernpanalytical.com/en/products/product-range/asd-range/labspec-range/labspec-4-hi-res-analytical-instrument.
[16]
M. Ecarnot, P. Bączyk, L. Tessarotto, C. Chervin, Rapid phenotyping of the tomato fruit model, micro-tom, with a portable vis-nir spectrometer, Plant physiology and biochemistry 70 (2013) 159--163.
[17]
R. Lu, Nondestructive measurement of firmness and soluble solids content for apple fruit using hyperspectral scattering images, Sensing and Instrumentation for Food Quality and Safety 1 (1) (2007) 19--27.
[18]
J. F. I. Nturambirwe, H. H. Nieuwoudt, W. J. Perold, U. L. Opara, Non-destructive measurement of internal quality of apple fruit by a contactless nir spectrometer with genetic algorithm model optimization, Scientific African 3 (2019) e00051.
[19]
Felix f-750, https://felixinstruments.com/food-science-instruments/portable-nir-analyzers/f-750-produce-quality-meter/.
[20]
A. Ren, A. Zahid, A. Zoha, S. A. Shah, M. A. Imran, A. Alomainy, Q. H. Abbasi, Machine learning driven approach towards the quality assessment of fresh fruits using non-invasive sensing, IEEE Sensors Journal 20 (4) (2019) 2075--2083.
[21]
S. Tan, L. Zhang, J. Yang, Sensing fruit ripeness using wireless signals, in: ICCCN, IEEE, 2018, pp. 1--9.
[22]
J. Ding, R. Chandra, Towards low cost soil sensing using wi-fi, in: Mobicom, ACM, 2019, pp. 1--16.
[23]
C. Feng, J. Xiong, L. Chang, J. Wang, X. Chen, D. Fang, Z. Tang, Wimi: Target material identification with commodity wi-fi devices, in: ICDCS, IEEE, 2019, pp. 700--710.
[24]
U. Ha, J. Leng, A. Khaddaj, F. Adib, Food and liquid sensing in practical environments using rfids, in: NSDI, USENIX, 2020, pp. 1083--1100.
[25]
B. Xie, J. Xiong, X. Chen, E. Chai, L. Li, Z. Tang, D. Fang, Tagtag: material sensing with commodity rfid, in: Sensys, ACM, 2019, pp. 338--350.
[26]
J. Wang, J. Xiong, X. Chen, H. Jiang, R. K. Balan, D. Fang, Tagscan: Simultaneous target imaging and material identification with commodity rfid devices, in: Mobicom, ACM, 2017, pp. 288--300.
[27]
A. Dhekne, M. Gowda, Y. Zhao, H. Hassanieh, R. R. Choudhury, Liquid: A wireless liquid identifier, in: Mobisys, ACM, 2018, pp. 442--454.
[28]
H.-S. Yeo, G. Flamich, P. Schrempf, D. Harris-Birtill, A. Quigley, Radarcat: Radar categorization for input & interaction, in: UIST, 2016, pp. 833--841.
[29]
Y. Zhu, Y. Zhu, B. Y. Zhao, H. Zheng, Reusing 60ghz radios for mobile radar imaging, in: Mobicom, ACM, 2015, pp. 103--116.
[30]
Y. Ren, S. Tan, L. Zhang, Z. Wang, Z. Wang, J. Yang, Liquid level sensing using commodity wifi in a smart home environment, IMWUT 4 (1) (2020) 1--30.
[31]
D. Wu, R. Gao, Y. Zeng, J. Liu, L. Wang, T. Gu, D. Zhang, Fingerdraw: Sub-wavelength level finger motion tracking with wifi signals, IMWUT 4 (1) (2020) 1--27.
[32]
Tpf 750 fruit spectrometer (portable), http://www.top17.net/product/2873.html.
[33]
ideaoptics nir1700 spectrometer, http://www.ideaoptics.com/SucessCase/Ncontent.aspx?id=65509741-b5fb-491d-a204-7d9625d048cc.
[34]
D. E. Khaled, N. Novas, J. A. Gazquez, R. M. Garcia, F. Manzano-Agugliaro, Fruit and vegetable quality assessment via dielectric sensing, Sensors 15 (7) (2015) 15363--15397.
[35]
D. Devices, Gs3 water content, ec, and temperature sensors operator's manual, http://www.ictinternational.com/content/uploads/2014/03/13822_GS3_Web.pdf (2011).
[36]
Lenntech, Water conductivity, https://www.lenntech.com/applications/ultrapure/conductivity/water-conductivity.htm.
[37]
C. Wang, J. Liu, Y. Chen, H. Liu, Y. Wang, Towards in-baggage suspicious object detection using commodity wifi, in: CNS, IEEE, 2018, pp. 1--9.
[38]
A. S. D. W. D. H. Wenjun Hu, Linux 802.11n csi tool, https://github.com/dhalperi/linux-80211n-csitool/.
[39]
J. Gjengset, J. Xiong, G. McPhillips, K. Jamieson, Phaser: Enabling phased array signal processing on commodity wifi access points, in: Mobicom, ACM, 2014, pp. 153--164.
[40]
M. Kotaru, K. Joshi, D. Bharadia, S. Katti, Spotfi: Decimeter level localization using wifi, in: Sigcomm, 2015, pp. 269--282.
[41]
Y. Xie, Y. Zhang, J. C. Liando, M. Li, Swan: Stitched wi-fi antennas, in: Mobicom, 2018, pp. 51--66.
[42]
K. Niu, F. Zhang, Z. Chang, D. Zhang, A fresnel diffraction model based human respiration detection system using cots wi-fi devices, in: UbiComp, ACM, 2018, pp. 416--419.
[43]
Y. Xie, Z. Li, M. Li, Precise power delay profiling with commodity wi-fi, IEEE Transactions on Mobile Computing 18 (6) (2018) 1342--1355.
[44]
N. Yu, W. Wang, A. X. Liu, L. Kong, Qgesture: Quantifying gesture distance and direction with wifi signals, IMWUT 2 (1) (2018) 1--23.
[45]
H. Dang, J. Song, Q. Guo, A fruit size detecting and grading system based on image processing, in: IHMSC, Vol. 2, 2010, pp. 83--86.
[46]
Y. Zhang, Z. Dong, X. Chen, W. Jia, S. Du, K. Muhammad, S. Wang, Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation, Multim. Tools Appl. 78 (3) (2019) 3613--3632.
[47]
W.-c. Guo, S. O. Nelson, S. Trabelsi, S. J. Kays, 10--1800-mhz dielectric properties of fresh apples during storage, Journal of Food engineering 83 (4) (2007) 562--569.
[48]
W. Guo, X. Zhu, S. O. Nelson, R. Yue, H. Liu, Y. Liu, Maturity effects on dielectric properties of apples from 10 to 4500 mhz, LWT-Food Science and Technology 44 (1) (2011) 224--230.
[49]
D. Xie, D. Liu, W. Guo, Relationship of the optical properties with soluble solids content and moisture content of strawberry during ripening, Postharvest Biology and Technology 179 (2021) 111569.
[50]
J. A. Hartigan, M. A. Wong, Algorithm as 136: A k-means clustering algorithm, Journal of the royal statistical society. series c (applied statistics) 28 (1) (1979) 100--108.
[51]
G. Guo, H. Wang, D. Bell, Y. Bi, K. Greer, Knn model-based approach in classification, in: OTM Confederated International Conferences" On the Move to Meaningful Internet Systems", Springer, 2003, pp. 986--996.
[52]
N. Muramatsu, N. Sakurai, N. Wada, R. Yamamoto, K. Tanaka, T. Asakura, Y. Ishikawa-Takano, D. J. Nevins, Remote sensing of fruit textural changes with a laser doppler vibrometer, Journal of the American Society for Horticultural Science 125 (1) (2000) 120--127.
[53]
H. Matsui, T. Hashizume, K. Yatani, Al-light: An alcohol-sensing smart ice cube, IMWUT 2 (3) (2018) 1--20.
[54]
S. Lee, B.-K. Cho, Evaluation of the firmness measurement of fruit by using a non-contact ultrasonic technique, in: ICIEA, IEEE, 2013, pp. 1331--1336.
[55]
F. YILDIZ, A. T. ÖZDEMİR, S. ULUIŞIK, Custom design fruit quality evaluation system with non-destructive testing (ndt) techniques, in: IDAP, IEEE, 2018, pp. 1--5.
[56]
Cisco annual internet report (2018-2023) white paper, https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (Mar. 2020).
[57]
M. M. Atia, A. Noureldin, M. J. Korenberg, Dynamic online-calibrated radio maps for indoor positioning in wireless local area networks, IEEE Transactions on Mobile Computing 12 (9) (2012) 1774--1787.
[58]
N. Kviklienė, A. Valiuškaitė, P. Viškelis, et al., Effect of harvest maturity on quality and storage ability of apple cv.'ligol'., Sodininkystė ir Daršininkystė 27 (2) (2008) 339--346.

Cited By

View all
  • (2024)UbiHR: Resource-efficient Long-range Heart Rate Sensing on Ubiquitous DevicesProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36997718:4(1-26)Online publication date: 21-Nov-2024
  • (2024)Ring-a-Pose: A Ring for Continuous Hand Pose TrackingProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36997418:4(1-30)Online publication date: 21-Nov-2024
  • (2024)DEWS: A Distributed Measurement Scheme for Efficient Wireless SensingProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36997288:4(1-34)Online publication date: 21-Nov-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies  Volume 5, Issue 4
Dec 2021
1307 pages
EISSN:2474-9567
DOI:10.1145/3508492
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 December 2021
Published in IMWUT Volume 5, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. ANN
  2. CSI
  3. Fruit Sensing
  4. Image Processing
  5. Moisture
  6. Signal Processing
  7. Soluble Solid Content
  8. Wi-Fi

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • Facebook Research Award
  • NSFC
  • the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)169
  • Downloads (Last 6 weeks)13
Reflects downloads up to 22 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)UbiHR: Resource-efficient Long-range Heart Rate Sensing on Ubiquitous DevicesProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36997718:4(1-26)Online publication date: 21-Nov-2024
  • (2024)Ring-a-Pose: A Ring for Continuous Hand Pose TrackingProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36997418:4(1-30)Online publication date: 21-Nov-2024
  • (2024)DEWS: A Distributed Measurement Scheme for Efficient Wireless SensingProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36997288:4(1-34)Online publication date: 21-Nov-2024
  • (2024)“News has Various Shades”: Quantifying and Analyzing Media Bias at Aspect-level GranularityACM Journal on Computing and Sustainable Societies10.1145/36987972:4(1-51)Online publication date: 28-Nov-2024
  • (2024)Spatio-Temporal Synergy with ViT: Enhancing Collaborative Perception and Object Detection for Heterogeneous AgentsProceedings of the First ACM International Workshop on Resource-efficient Mobile and Embedded LLM System in AIoT10.1145/3698383.3699621(3-5)Online publication date: 4-Nov-2024
  • (2024)GrainSense: A Wireless Grain Moisture Sensing System Based on Wi-Fi SignalsProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36785898:3(1-25)Online publication date: 9-Sep-2024
  • (2024)EyeGesener: Eye Gesture Listener for Smart Glasses Interaction Using Acoustic SensingProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36785418:3(1-28)Online publication date: 9-Sep-2024
  • (2024)Lipwatch: Enabling Silent Speech Recognition on Smartwatches using Acoustic SensingProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36596148:2(1-29)Online publication date: 15-May-2024
  • (2024)Sensing to Hear through MemoryProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36595988:2(1-31)Online publication date: 15-May-2024
  • (2024)UHeadProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36435518:1(1-28)Online publication date: 6-Mar-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media