Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Static and Dynamic Progressive Geospatial Interlinking

Published: 22 April 2022 Publication History
  • Get Citation Alerts
  • Abstract

    Geospatial data constitute a considerable part of Semantic Web data, but at the moment, its sources are insufficiently interlinked with topological relations in the Linked Open Data cloud. Geospatial Interlinking aims to cover this gap through space tiling techniques, which significantly restrict the search space. Yet, the state-of-the-art techniques operate exclusively in a batch manner that produces results only after processing all their geometries. In this work, we address this issue by defining the task of Progressive Geospatial Interlinking, which produces results in a pay-as-you-go manner when the available computational or temporal resources are limited. We propose a static progressive algorithm, which employs a fixed processing order, and a dynamic one, whose processing order is updated whenever new topological relations are discovered. We equip both algorithms with a series of weighting schemes and explain how they can be adapted to massive parallelization with Apache Spark. We conduct a thorough experimental study over six large, real datasets, demonstrating the superiority of our techniques over the current state-of-the-art. Special care is also taken to analyze the performance of the various weighting schemes.

    References

    [1]
    Abdullah Fathi Ahmed, Mohamed Ahmed Sherif, and Axel-Cyrille Ngonga Ngomo. 2018. RADON2—A buffered-intersection matrix computing approach to accelerate link discovery over geo-spatial RDF knowledge bases: OAEI2018 results. In Proceedings of the International Workshop on Ontology Matching. 197–204.
    [2]
    Edward P. F. Chan and Jimmy N. H. Ng. 1997. A general and efficient implementation of geometric operators and predicates. In Proceedings of the International Symposium on Advances in Spatial Databases (SSD’97), Vol. 1262. 69–93.
    [3]
    Eliseo Clementini, Paolino Di Felice, and Peter van Oosterom. 1993. A small set of formal topological relationships suitable for end-user interaction. In Proceedings of the International Symposium on Advances in Spatial Databases (SSD’93). 277–295.
    [4]
    Eliseo Clementini, Jayant Sharma, and Max J. Egenhofer. 1994. Modelling topological spatial relations: Strategies for query processing. Comput. Graph. 18, 6 (1994), 815–822.
    [5]
    Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. 2009. AgreementMaker: Efficient matching for large real-world schemas and ontologies. Proc. VLDB Endow. 2, 2 (2009), 1586–1589.
    [6]
    Jens-Peter Dittrich and Bernhard Seeger. 2000. Data redundancy and duplicate detection in spatial join processing. In Proceedings of the IEEE International Conference on Data Engineering (ICDE’00). 535–546.
    [7]
    Max J. Egenhofer and Robert D. Franzosa. 1991. Point-set topological spatial relations. Int. J. Geogr. Info. Syst. 5, 2 (1991), 161–174.
    [8]
    Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce framework for spatial data. In Proceedings of the IEEE International Conference on Data Engineering (ICDE’15). IEEE Computer Society, 1352–1363.
    [9]
    Theofilos Ioannidis, George Garbis, Kostis Kyzirakos, Konstantina Bereta, and Manolis Koubarakis. 2021. Evaluating geospatial RDF stores using the benchmark geographica 2. J. Data Semant. 10, 3–4 (2021), 189–228.
    [10]
    Mahmoud Ismail, Ermias Gebremeskel, Theofilos Kakantousis, Gautier Berthou, and Jim Dowling. 2017. Hopsworks: Improving user experience and development on hadoop with scalable, strongly consistent metadata. In Proceedings of the International Conference on Distributed Computing Systems (ICDCS’17). IEEE Computer Society, 2525–2528.
    [11]
    Edwin H. Jacox and Hanan Samet. 2007. Spatial join techniques. ACM Trans. Database Syst. 32, 1 (2007), 7.
    [12]
    Krzysztof Janowicz, Yingjie Hu, Grant McKenzie, Song Gao, Blake Regalia, Gengchen Mai, Rui Zhu, Benjamin Adams, and Kerry L. Taylor. 2016. Moon landing or safari? A study of systematic errors and their causes in geographic linked data. In Proceedings of the International Conference on Geographic Information Science (GIScience’16). 275–290.
    [13]
    Krzysztof Janowicz, Simon Scheider, Todd Pehle, and Glen Hart. 2012. Geospatial semantics and linked spatiotemporal data—Past, present, and future. Semantic Web 3, 4 (2012), 321–332.
    [14]
    Oje Kwon and Ki-Joune Li. 2011. Progressive spatial join for polygon data stream. In Proceedings of ACM International Conference on Advances in Geographic Information Systems (SIGSPATIAL’11). 389–392.
    [15]
    George Mandilaras, Despina-Athanasia Pantazi, Manolis Koubarakis, Nick Hughes, Alistair Everett, and Åshild Kiærbech. 2020. Ice Monitoring With ExtremeEarth. In Workshop on Large Scale RDF Analytics LASCAR II, collocated with ESWC’20. http://www.earthanalytics.eu/publications/ExtremeEarthIceDemo.pdf.
    [16]
    Amin Mobasheri. 2017. A rule-based spatial reasoning approach for OpenStreetMap data quality enrichment; case study of routing and navigation. Sensors 17, 11 (2017), 2498.
    [17]
    Axel-Cyrille Ngonga Ngomo. 2013. ORCHID—Reduction-ratio-optimal computation of geo-spatial distances for link discovery. In Proceedings of the International Semantic Web Conference (ISWC’13). 395–410.
    [18]
    Salman Niazi, Mahmoud Ismail, Seif Haridi, and Jim Dowling. 2019. HopsFS: Scaling hierarchical file system metadata using NewSQL databases. In Encyclopedia of Big Data Technologies. Springer.
    [19]
    George Papadakis, Georgios Mandilaras, Nikos Mamoulis, and Manolis Koubarakis. 2021. Progressive, holistic geospatial interlinking. In Proceedings of the Web Conference.
    [20]
    Thorsten Papenbrock, Arvid Heise, and Felix Naumann. 2015. Progressive duplicate detection. IEEE Trans. Knowl. Data Eng. 27, 5 (2015), 1316–1329.
    [21]
    Jignesh M. Patel and David J. DeWitt. 1996. Partition based spatial-merge join. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM Press, 259–270.
    [22]
    Matthew Perry and John Herring. 2012. OGC GeoSPARQL-A geographic query language for RDF data. OGC Implement. Stand. 40 (2012).
    [23]
    Blake Regalia, Krzysztof Janowicz, and Grant McKenzie. 2019. Computing and querying strict, approximate, and metrically refined topological relations in linked geographic data. Trans. GIS 23, 3 (2019), 601–619.
    [24]
    Georgios M. Santipantakis, Christos Doulkeridis, Akrivi Vlachou, and George A. Vouros. 2020. Integrating data by discovering topological and proximity relations among spatiotemporal entities. In Big Data Analytics for Time-critical Mobility Forecasting: From Raw Data to Trajectory-oriented Mobility Analytics in the Aviation and Maritime Domains. Springer, 155–179.
    [25]
    Georgios M. Santipantakis, Apostolos Glenis, Christos Doulkeridis, Akrivi Vlachou, and George A. Vouros. 2019. stLD: Towards a spatio-temporal link discovery framework. In Proceedings of the International Workshop on Semantic Big Data (SBD@SIGMOD’19). 4:1–4:6.
    [26]
    Tzanina Saveta, Irini Fundulaki, Giorgos Flouris, and Axel-Cyrille Ngonga Ngomo. 2018. SPgen: A benchmark generator for spatial link discovery tools. In Proceedings of the International Semantic Web Conference (ISWC’18). 408–423.
    [27]
    Mohamed Ahmed Sherif, Kevin Dreßler, Panayiotis Smeros, and Axel-Cyrille Ngonga Ngomo. 2017. RADON—Rapid discovery of topological relations. In Proceedings of the AAAI Conference on Artificial Intelligence. 175–181.
    [28]
    Giovanni Simonini, Sonia Bergamaschi, and H. V. Jagadish. 2016. BLAST: A loosely schema-aware meta-blocking approach for entity resolution. Proc. VLDB Endow. 9, 12 (2016), 1173–1184.
    [29]
    Giovanni Simonini, George Papadakis, Themis Palpanas, and Sonia Bergamaschi. 2019. Schema-agnostic progressive entity resolution. IEEE Trans. Knowl. Data Eng. 31, 6 (2019), 1208–1221.
    [30]
    Panayiotis Smeros and Manolis Koubarakis. 2016. Discovering spatial and temporal links among RDF data. In Proceedings of the Workshop on Linked Data on the Web (LDOW’16), Co-located with 25th International World Wide Web Conference (WWW’16).
    [31]
    Wee Hyong Tok, Stéphane Bressan, and Mong-Li Lee. 2006. Progressive spatial join. In Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM’06). 353–358.
    [32]
    Dimitrios Tsitsigkos, Panagiotis Bouros, Nikos Mamoulis, and Manolis Terrovitis. 2019. Parallel in-memory evaluation of spatial joins. In Proceedings of the International Conference on Advances in Geographic Information Systems (SIGSPATIAL’19). 516–519.
    [33]
    Steven Euijong Whang, David Marmaros, and Hector Garcia-Molina. 2013. Pay-as-you-go entity resolution. IEEE Trans. Knowl. Data Eng. 25, 5 (2013), 1111–1124.
    [34]
    Zhengcong Yin, Chong Zhang, Daniel W. Goldberg, and Sathya Prasad. 2019. An NLP-based question answering framework for spatio-temporal analysis and visualization. In Proceedings of the 2nd International Conference on Geoinformatics and Data Analysis. 61–65.
    [35]
    Jia Yu, Zongsi Zhang, and Mohamed Sarwat. 2019. Spatial data management in apache spark: The GeoSpark perspective and beyond. GeoInformatica 23, 1 (2019), 37–78.

    Cited By

    View all
    • (2023)Geospatial Data ScienceundefinedOnline publication date: 9-Jun-2023

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Spatial Algorithms and Systems
    ACM Transactions on Spatial Algorithms and Systems  Volume 8, Issue 2
    June 2022
    253 pages
    ISSN:2374-0353
    EISSN:2374-0361
    DOI:10.1145/3506671
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 April 2022
    Online AM: 15 March 2022
    Accepted: 01 December 2021
    Revised: 01 September 2021
    Received: 01 April 2021
    Published in TSAS Volume 8, Issue 2

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Geospatial interlinking
    2. DE-9IM relations
    3. progressive processing

    Qualifiers

    • Research-article
    • Refereed

    Funding Sources

    • EU H2020 project ExtremeEarth
    • Hellenic Foundation for Research and Innovation (H.F.R.I.)

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)54
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 10 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Geospatial Data ScienceundefinedOnline publication date: 9-Jun-2023

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media