Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3512290.3528858acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Multi-objective NK landscapes with heterogeneous objectives

Published: 08 July 2022 Publication History

Abstract

So far, multi-objective NK landscapes have been investigated under the assumption of a homogeneous nature of the involved objectives in terms of difficulty. However, we argue that problems with heterogeneous objectives, e.g., in terms of multi-modality, can be challenging for multi-objective evolutionary algorithms, and deserve further considerations. In this paper, we propose a model of multi-objective NK landscapes, where each objective has a different degree of variable interactions (K), as a benchmark to investigate heterogeneous multi-objective optimization problems. We show that the use of a rank-annotated neighborhood network with labeled local optimal solutions, together with landscape metrics extracted from the heterogeneous objectives, thoroughly characterize bi-objective NK landscapes with a different level of heterogeneity among the objectives.

References

[1]
H. Aguirre and K. Tanaka. Insights and properties of multiobjective MNK-landscapes. In Proceedings of the 2004 Congress on Evolutionary Computation CEC-2004, pages 196--203, Portland, Oregon, 2004. IEEE Press.
[2]
H. E. Aguirre and K. Tanaka. Working principles, behavior, and performance of MOEAs on MNK-landscapes. European Journal of Operational Research, 181(3):1670--1690, 2007.
[3]
R. Allmendinger, J. Handl, and J. Knowles. Multiobjective optimization: When objectives exhibit non-uniform latencies. European Journal of Operational Research, 243(2):497--513, 2015.
[4]
R. Allmendinger, A. Jaszkiewicz, A. Liefooghe, and C. Tammer. What if we increase the number of objectives? theoretical and empirical implications for many-objective optimization. CoRR, abs/2106.03275, 2021.
[5]
R. Allmendinger and J. Knowles. 'hang on a minute': Investigations on the effects of delayed objective functions in multiobjective optimization. In International Conference on Evolutionary Multi-Criterion Optimization, pages 6--20. Springer, 2013.
[6]
R. Allmendinger and J. Knowles. Heterogeneous objectives: state-of-the-art and future research. CoRR, abs/2103.15546, 2021.
[7]
L. Altenberg. Evolving better representations through selective genome growth. In Proceedings of the FiPst IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, pages 182--187. IEEE, 1994.
[8]
L. Altenberg. Handbook of Evolutionary Computation, chapter NK fitness landscapes, page B2.7.2. 1997.
[9]
J. Blank and K. Deb. Constrained bi-objective surrogate-assisted optimization of problems with heterogeneous evaluation times: Expensive objectives and inexpensive constraints. In Proceedings of the Evolutionary Multi-Criterion Optimization (EMO-2021), pages 257--269, 2021.
[10]
F. Chicano, F. Daolio, G. Ochoa, S. Vérel, M. Tomassini, and E. Alba. Local optima networks, landscape autocorrelation and heuristic search performance. In International Conference on Parallel Problem Solving from Nature, pages 337--347. Springer, 2012.
[11]
T. Chugh, R. Allmendinger, V. Ojalehto, and K. Miettinen. Surrogate-assisted evolutionary biobjective optimization for objectives with non-uniform latencies. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2018), pages 609--616, 2018.
[12]
C. Coello, G. Lamont, and D. Van Veldhuizen. Evolutionary Algorithms for Solving Multi-objective Problems. Springer-Verlag New York Inc, 2007.
[13]
R. Cosson, B. Derbel, A. Liefooghe, H. Aguirre, K. Tanaka, and Q. Zhang. Decomposition-based multi-objective landscape features and automated algorithm selection. In European Conference on Evolutionary Computation in Combinatorial Optimization (Part of EvoStar), pages 34--50. Springer, 2021.
[14]
F. Daolio, A. Liefooghe, S. Verel, H. Aguirre, and K. Tanaka. Problem features versus algorithm performance on rugged multiobjective combinatorial fitness landscapes. Evolutionary Computation, 25(4):555--585, 2017.
[15]
K. Deb. Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester, UK, 2001.
[16]
B. Derbel, D. Brockhoff, A. Liefooghe, and S. Verel. On the impact of multiobjective scalarizing functions. In Parallel Problem Solving from Nature-PPSN XIII, pages 548--558. Springer, 2014.
[17]
D. Garrett. Plateau connection structure and multiobjective metaheuristic performance. In 2009 IEEE Congress on Evolutionary Computation, pages 1281--1288. IEEE, 2009.
[18]
D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA, 1989.
[19]
S. Greco, K. Klamroth, J. D. Knowles, and G. Rudolph. Understanding complexity in multiobjective optimization (Dagstuhl Seminar 15031). In Dagstuhl Reports, volume 5. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.
[20]
S. Herrmann, G. Ochoa, and F. Rothlauf. Communities of local optima as funnels in fitness landscapes. In Proceedings of the Genetic and Evolutionary Computation Conference 2016, pages 325--331, 2016.
[21]
S. Kauffman. Origins of Order. Oxford University Press, 1993.
[22]
J. Knowles and D. Corne. Instance generators and test suites for the multiobjective quadratic assignment problem. In Evolutionary Multi-criterion Optimization, pages 295--310. Springer, 2003.
[23]
J. D. Knowles and D. Corne. Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. In S. Obayashi et al., editors, Evolutionary Multi-criterion Optimization (EMO 2007), volume 4403 of Lecture Notes in Computer Science, pages 757--771. Springer, 2007.
[24]
A. Liefooghe, F. Daolio, S. Verel, B. Derbel, H. Aguirre, and K. Tanaka. Landscape-aware performance prediction for evolutionary multi-objective optimization. IEEE Transactions on Evolutionary Computation, 4(9):1063--1077, 2020.
[25]
A. Liefooghe, B. Derbel, S. Verel, M. López-Ibáñez, H. Aguirre, and K. Tanaka. On Pareto local optimal solutions networks. In International Conference on Parallel Problem Solving from Nature, pages 232--244. Springer, 2018.
[26]
A. Liefooghe, S. Verel, B. Derbel, H. Aguirre, and K. Tanaka. Dominance, indicator and decomposition based search for multi-objective QAP: landscape analysis and automated algorithm selection. In International Conference on Parallel Problem Solving from Nature, pages 33--47. Springer, 2020.
[27]
G. Marquet, B. Derbel, A. Liefooghe, and T. El-Ghazali. Shake them all! rethinking selection and replacement in MOEA/D. In Parallel Problem Solving from Nature - PPSN XIII International Conference, volume 8672, pages 641--651. Springer, 2014.
[28]
M. S. Martins, M. E. Yafrani, M. Delgado, R. Lüders, R. Santana, H. V. Siqueira, H. G. Akcay, and B. Ahiod. Analysis of Bayesian network learning techniques for a hybrid multi-objective Bayesian estimation of distribution algorithm: a case study on MNK landscape. Journal of Heuristics, 27(4):549--573, 2021.
[29]
G. Ochoa, M. Tomassini, S. Vérel, and C. Darabos. A study of NK landscapes' basins and local optima networks. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation (GECCO-2008), pages 555--562. ACM, 2008.
[30]
L. Paquete, T. Schiavinotto, and T. Stützle. On local optima in multiobjective combinatorial optimization problems. Annals of Operations Research, 156(1):83--97, 2007.
[31]
L. Paquete and T. Stützle. Clusters of non-dominated solutions in multiobjective combinatorial optimization: An experimental analysis. In Multiobjective Programming and Goal Programming, pages 69--77. Springer, 2009.
[32]
R. Santana, R. Armañanzas, C. Bielza, and P. Larrañaga. Network measures for information extraction in evolutionary algorithms. International Journal of Computational Intelligence Systems, 6(6):1163--1188, 2013.
[33]
R. Santana, C. Bielza, J. A. Lozano, and P. Larrañaga. Mining probabilistic models learned by EDAs in the optimization of multi-objective problems. In Proceedings of the Genetic and Evolutionary Computation Conference GECCO-2009, pages 445--452, New York, NY, USA, 2009. ACM.
[34]
R. Santana, A. Mendiburu, and J. A. Lozano. Evolving MNK-landscapes with structural constraints. In Proceedings of the IEEE Congress on Evolutionary Computation CEC 2015, pages 1364--1371, Sendai, Japan, 2015. IEEE press.
[35]
A. M. Sutton. An analysis of combinatorial search spaces for a class of NP-hard problems. PhD thesis, Colorado State University, 2011.
[36]
S. Verel, A. Liefooghe, L. Jourdan, and C. Dhaenens. On the structure of multiobjective combinatorial search space:MNK-landscapes with correlated objectives. European Journal of Operational Research, 227(2):331--342, 2013.
[37]
S. Verel, G. Ochoa, and M. Tomassini. Local optima networks of NK landscapes with neutrality. Evolutionary Computation, IEEE Transactions on, 15(6):783--797, 2011.

Cited By

View all
  • (2024)Designing Helper Objectives in Multi-Objectivization2024 IEEE Congress on Evolutionary Computation (CEC)10.1109/CEC60901.2024.10612125(1-8)Online publication date: 30-Jun-2024
  • (2024)A nonrevisiting genetic algorithm based on multi-region guided search strategyComplex & Intelligent Systems10.1007/s40747-024-01627-511:1Online publication date: 12-Nov-2024
  • (2024)A benchmark generator for scenario-based discrete optimizationComputational Optimization and Applications10.1007/s10589-024-00551-188:1(349-378)Online publication date: 6-Feb-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference
July 2022
1472 pages
ISBN:9781450392372
DOI:10.1145/3512290
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 July 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. NK landscapes
  2. heterogeneous objectives
  3. landscape analysis
  4. multi-objective optimization

Qualifiers

  • Research-article

Conference

GECCO '22
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)35
  • Downloads (Last 6 weeks)4
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Designing Helper Objectives in Multi-Objectivization2024 IEEE Congress on Evolutionary Computation (CEC)10.1109/CEC60901.2024.10612125(1-8)Online publication date: 30-Jun-2024
  • (2024)A nonrevisiting genetic algorithm based on multi-region guided search strategyComplex & Intelligent Systems10.1007/s40747-024-01627-511:1Online publication date: 12-Nov-2024
  • (2024)A benchmark generator for scenario-based discrete optimizationComputational Optimization and Applications10.1007/s10589-024-00551-188:1(349-378)Online publication date: 6-Feb-2024

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media