Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3514221.3517823acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

SLAM: Efficient Sweep Line Algorithms for Kernel Density Visualization

Published: 11 June 2022 Publication History
  • Get Citation Alerts
  • Abstract

    Kernel Density Visualization (KDV) has been extensively used in a wide range of applications, including traffic accident hotspot detection, crime hotspot detection, disease outbreak detection, and ecological modeling. However, KDV is a computationally expensive operation, which is not scalable to large datasets (e.g., million-scale data points) and high resolution sizes (e.g., 1920 x 1080). To significantly improve the efficiency for generating KDV, we develop two efficient Sweep Line AlgorithMs (SLAM), which can theoretically reduce the time complexity for generating KDV. By incorporating the resolution-aware optimization (RAO) into SLAM, we can further achieve the lowest time complexity for generating KDV. Our extensive experiments on four large-scale real datasets (up to 4.33 million data points) show that all our methods can achieve one to two-order-of-magnitude speedup in many test cases and efficiently support KDV with exploratory operations (e.g., zooming and panning) compared with the state-of-the-art solutions.

    Supplementary Material

    MP4 File (SLAM_presentation_v5.mp4)
    Complexity-Optimized Algorithms for generating exact kernel density visualization (KDV), without increasing the space complexity.

    References

    [1]
    [n. d.]. ArcGIS. http://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/how-kernel-density-works.htm.
    [2]
    [n. d.]. Los Angeles Open Data. https://data.lacity.org/A-Safe-City/Crime-Data-from-2010-to-2019/63jg-8b9z.
    [3]
    [n. d.]. NYC Open Data. https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes/h9gi-nx95.
    [4]
    [n. d.]. San Francisco Open Data. https://data.sfgov.org/City-Infrastructure/311-Cases/vw6y-z8j6.
    [5]
    [n. d.]. Seattle Open Data. https://data.seattle.gov/Public-Safety/SPD-Crime-Data-2008-Present/tazs-3rd5.
    [6]
    Pankaj K. Agarwal, Lars Arge, and Ke Yi. 2005. I/O-Efficient Construction of Constrained Delaunay Triangulations. In ESA. 355--366. https://doi.org/10.1007/11561071_33
    [7]
    Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, and Jeffrey Scott Vitter. 1998. Scalable Sweeping-Based Spatial Join. In VLDB. 570--581. http://www.vldb.org/conf/1998/p570.pdf
    [8]
    Adrian Baddeley, Ege Rubak, and Rolf Turner. 2015. Spatial point patterns: methodology and applications with R. CRC press.
    [9]
    Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for Associative Searching. Commun. ACM 18, 9 (1975), 509--517.
    [10]
    Michal Bíl, Richard Andrá?ik, and Zbyn?k Jano?ka. 2013. Identification of hazardous road locations of traffic accidents by means of kernel density estimation and cluster significance evaluation. Accident Analysis & Prevention 55 (2013), 265--273. https://doi.org/10.1016/j.aap.2013.03.003
    [11]
    Jean-Daniel Boissonnat and Franco P. Preparata. 2000. Robust Plane Sweep for Intersecting Segments. SIAM Journal of Computing 29, 5 (2000), 1401--1421. https://doi.org/10.1137/S0097539797329373
    [12]
    Panagiotis Bouros and Nikos Mamoulis. 2017. A Forward Scan based Plane Sweep Algorithm for Parallel Interval Joins. Proceedings of the VLDB Endowment 10, 11 (2017), 1346--1357. https://doi.org/10.14778/3137628.3137644
    [13]
    Panagiotis Bouros, Nikos Mamoulis, Dimitrios Tsitsigkos, and Manolis Terrovitis. 2021. In-Memory Interval Joins. The VLDB Journal 30, 4 (2021), 667--691. https://doi.org/10.1007/s00778-020-00639-0
    [14]
    Ellen E. Brandell, Nicholas M. Fountain-Jones, Marie L. J. Gilbertson, Paul C. Cross, Peter J. Hudson, Douglas W. Smith, Daniel R. Stahler, Craig Packer, and Meggan E. Craft. 2021. Group density, disease, and season shape territory size and overlap of social carnivores. Journal of Animal Ecology 90, 1 (2021), 87--101. https://doi.org/10.1111/1365--2656.13294 arXiv:https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/1365--2656.13294
    [15]
    Spencer Chainey, Lisa Tompson, and Sebastian Uhlig. 2008. The Utility of Hotspot Mapping for Predicting Spatial Patterns of Crime. Security Journal 21, 1 (01 Feb 2008), 4--28. https://doi.org/10.1057/palgrave.sj.8350066
    [16]
    Tsz Nam Chan, Reynold Cheng, and Man Lung Yiu. 2020. QUAD: Quadratic- Bound-based Kernel Density Visualization. In SIGMOD. 35--50. https://doi.org/10.1145/3318464.3380561
    [17]
    Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Byron Choi, and Jianliang Xu. 2022. SAFE: A Share-and-Aggregate Bandwidth Exploration Framework for Kernel Density Visualization. Proc. VLDB Endow. 15, 3 (2022), 513--526.
    [18]
    Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Byron Choi, and Jianliang Xu. 2022. SWS: A Complexity-Optimized Solution for Spatial-Temporal Kernel Density Visualization. Proc. VLDB Endow. 15, 4 (2022), 814--827.
    [19]
    Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Weng Hou Tong, Shivansh Mittal, Ye Li, and Reynold Cheng. 2021. KDV-Explorer: A Near Real-Time Kernel Density Visualization System for Spatial Analysis. Proceedings of the VLDB Endowment 14, 12 (2021), 2655--2658. http://www.vldb.org/pvldb/vol14/p2655-chan.pdf
    [20]
    Tsz Nam Chan, Zhe Li, Leong Hou U, Jianliang Xu, and Reynold Cheng. 2021. Fast Augmentation Algorithms for Network Kernel Density Visualization. Proc. VLDB Endow. 14, 9 (2021), 1503--1516. http://www.vldb.org/pvldb/vol14/p1503-chan.pdf
    [21]
    Tsz Nam Chan, Leong Hou U, Reynold Cheng, Man Lung Yiu, and Shivansh Mittal. To appear. Efficient Algorithms for Kernel Aggregation Queries. IEEE Transactions on Knowledge and Data Engineering (To appear).
    [22]
    Tsz Nam Chan, Man Lung Yiu, and Leong Hou U. 2019. KARL: Fast Kernel Aggregation Queries. In ICDE. 542--553. https://doi.org/10.1109/ICDE.2019.00055
    [23]
    Dong-Wan Choi, Chin-Wan Chung, and Yufei Tao. 2014. Maximizing Range Sum in External Memory. ACM Transactions on Database Systems 39, 3 (2014), 21:1--21:44. https://doi.org/10.1145/2629477
    [24]
    Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. 2008. Computational geometry: algorithms and applications, 3rd Edition. Springer. https://www.worldcat.org/oclc/227584184
    [25]
    Jose Florencio de Queiroz Neto, Emanuele Marques dos Santos, Creto Augusto Vidal, and David S. Ebert. 2020. A Visual Analytics Approach to Facilitate Crime Hotspot Analysis. Computer Graphics Forum 39, 3 (2020), 139--151. https://doi.org/10.1111/cgf.13969
    [26]
    Vid Domiter and Borut Zalik. 2008. Sweep-line algorithm for constrained Delaunay triangulation. International Journal of Geographical Information Science 22, 4 (2008), 449--462. https://doi.org/10.1080/13658810701492241
    [27]
    Jianquan Dong, Jian Peng, Yanxu Liu, Sijing Qiu, and Yinan Han. 2020. Integrating spatial continuous wavelet transform and kernel density estimation to identify ecological corridors in megacities. Landscape and Urban Planning 199 (2020), 103815. https://doi.org/10.1016/j.landurbplan.2020.103815
    [28]
    C. H. Fleming, W. F. Fagan, T. Mueller, K. A. Olson, P. Leimgruber, and J. M. Calabrese. 2015. Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator. Ecology 96, 5 (2015), 1182--1188. https://doi.org/10.1890/14--2010.1 arXiv:https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1890/14--2010.1
    [29]
    Steven Fortune. 1986. A Sweepline Algorithm for Voronoi Diagrams. In SoCG. 313--322. https://doi.org/10.1145/10515.10549
    [30]
    Steven Fortune. 1987. A Sweepline Algorithm for Voronoi Diagrams. Algorithmica 2 (1987), 153--174. https://doi.org/10.1007/BF01840357
    [31]
    Edward Gan and Peter Bailis. 2017. Scalable Kernel Density Classification via Threshold-Based Pruning. In SIGMOD. 945--959.
    [32]
    A. Gramacki. 2017. Nonparametric Kernel Density Estimation and Its Computational Aspects. Springer International Publishing. https://books.google.com.hk/books?id=PCpEDwAAQBAJ
    [33]
    Alexander G. Gray and Andrew W. Moore. 2003. Nonparametric Density Estimation: Toward Computational Tractability. In SDM. 203--211.
    [34]
    Timothy Hart and Paul Zandbergen. 2014. Kernel density estimation and hotspot mapping: examining the influence of interpolation method, grid cell size, and bandwidth on crime forecasting. Policing: An International Journal of Police Strategies and Management 37 (2014), 305--323. https://doi.org/10.3390/s80603601
    [35]
    Casper Kejlberg-Rasmussen, Yufei Tao, Konstantinos Tsakalidis, Kostas Tsichlas, and Jeonghun Yoon. 2013. I/O-efficient planar range skyline and attrition priority queues. In PODS. 103--114. https://doi.org/10.1145/2463664.2465225
    [36]
    Seokyeon Kim, Seongmin Jeong, Insoo Woo, Yun Jang, Ross Maciejewski, and David S. Ebert. 2018. Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information. IEEE Transactions on Visualization and Computer Graphics 24, 3 (2018), 1287--1300. https://doi.org/10.1109/TVCG.2017.2666146
    [37]
    Ourania Kounadi, Alina Ristea, Adelson Araujo, and Michael Leitner. 2020. A systematic review on spatial crime forecasting. Crime Science 9, 7 (2020), 1--22.
    [38]
    Pei-Fen Kuo, Dominique Lord, and Troy Duane Walden. 2013. Using geographical information systems to organize police patrol routes effectively by grouping hotspots of crash and crime data. Journal of Transport Geography 30 (2013), 138--148. https://doi.org/10.1016/j.jtrangeo.2013.04.006
    [39]
    P.C. Lai, Chit-Ming Wong, Anthony Hedley, S.V. Lo, P.Y. Leung, J Kong, and G.M. Leung. 2004. Understanding the Spatial Clustering of Severe Acute Respiratory Syndrome (SARS) in Hong Kong. Environmental Health Perspectives 112, 15 (2004), 1550--1556. https://doi.org/10.1289/ehp.7117
    [40]
    Ove Daae Lampe and Helwig Hauser. 2011. Interactive visualization of streaming data with Kernel Density Estimation. In PacificVis. 171--178. https://doi.org/10.1109/PACIFICVIS.2011.5742387
    [41]
    Ross Maciejewski, Ryan Hafen, Stephen Rudolph, Stephen G. Larew, Michael A. Mitchell, William S. Cleveland, and David S. Ebert. 2011. Forecasting Hotspots - A Predictive Analytics Approach. IEEE Transactions on Visualization and Computer Graphics 17, 4 (2011), 440--453. https://doi.org/10.1109/TVCG.2010.82
    [42]
    Ross Maciejewski, Stephen Rudolph, Ryan Hafen, Ahmad M. Abusalah, Mohamed Yakout, Mourad Ouzzani, William S. Cleveland, Shaun J. Grannis, and David S. Ebert. 2010. A Visual Analytics Approach to Understanding Spatiotemporal Hotspots. IEEE Transactions on Visualization and Computer Graphics 16, 2 (2010), 205--220. https://doi.org/10.1109/TVCG.2009.100
    [43]
    Ross Maciejewski, Stephen Rudolph, Ryan Hafen, Ahmad M. Abusalah, Mohamed Yakout, Mourad Ouzzani, William S. Cleveland, Shaun J. Grannis, Michael Wade, and David S. Ebert. 2008. Understanding syndromic hotspots - a visual analytics approach. In VAST. 35--42. https://doi.org/10.1109/VAST.2008.4677354
    [44]
    Andrew W. Moore. 2000. The Anchors Hierarchy: Using the Triangle Inequality to Survive High Dimensional Data. In UAI. 397--405.
    [45]
    Norihiko Muroga, Yoko Hayama, Takehisa Yamamoto, Akihiro Kurogi, Tomoyuki Tsuda, and Toshiyuki Tsutsui. 2011. The 2010 Foot-and-Mouth Disease Epidemic in Japan. The Journal of Veterinary Medical Science 74, 4 (2011), 399--404. https://doi.org/10.1292/jvms.11-0271
    [46]
    A. Okabe and K. Sugihara. 2012. Spatial analysis along networks: statistical and computational methods. Wiley. https://books.google.com.hk/books?id=48GRqj51_W8C
    [47]
    Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake VanderPlas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011), 2825--2830.
    [48]
    Alexandre Perrot, Romain Bourqui, Nicolas Hanusse, Frédéric Lalanne, and David Auber. 2015. Large Interactive Visualization of Density Functions on Big Data Infrastructure. In LDAV. 99--106. https://doi.org/10.1109/LDAV.2015.7348077
    [49]
    Jeff M. Phillips. 2013. Samples for Kernels. In SODA. 1622--1632. https://doi.org/10.1137/1.9781611973105.116
    [50]
    Jeff M. Phillips and Wai Ming Tai. 2018. Improved Coresets for Kernel Density Estimates. In SODA. 2718--2727. https://doi.org/10.1137/1.9781611975031.173
    [51]
    Jeff M. Phillips and Wai Ming Tai. 2018. Near-Optimal Coresets of Kernel Density Estimates. In SOCG. 66:1--66:13. https://doi.org/10.4230/LIPIcs.SoCG.2018.66
    [52]
    QGIS Development Team. 2009. QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.osgeo.org
    [53]
    Jerry Ratcliffe and Spencer Chainey. 2005. GIS and crime mapping. John Wiley.
    [54]
    Vikas C. Raykar, Ramani Duraiswami, and Linda H. Zhao. 2010. Fast Computation of Kernel Estimators. Journal of Computational and Graphical Statistics 19, 1 (2010), 205--220. https://doi.org/10.1198/jcgs.2010.09046
    [55]
    Benjamin Romano and Zhe Jiang. 2017. Visualizing Traffic Accident Hotspots Based on Spatial-Temporal Network Kernel Density Estimation. In SIGSPATIAL. ACM, 98:1--98:4. https://doi.org/10.1145/3139958.3139981
    [56]
    Natalya Rybnikova, Richard G Stevens, David I Gregorio, Holly Samociuk, and Boris A Portnov. 2018. Kernel density analysis reveals a halo pattern of breast cancer incidence in Connecticut. Spatial and Spatio-temporal Epidemiology 26 (2018), 143--151.
    [57]
    D. W. Scott. 1992. Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley. https://books.google.com.hk/books?id=7crCUS_F2ocC
    [58]
    Cheng Sheng and Yufei Tao. 2011. On finding skylines in external memory. In PODS. 107--116. https://doi.org/10.1145/1989284.1989298
    [59]
    Xun Shi. 2010. Selection of bandwidth type and adjustment side in kernel density estimation over inhomogeneous backgrounds. International Journal of Geo- graphical Information Science 24, 5 (2010), 643--660. https://doi.org/10.1080/13658810902950625
    [60]
    Xun Shi, Meifang Li, Olivia Hunter, Bart Guetti, Angeline Andrew, Elijah Stommel, Walter Bradley, and Margaret Karagas. 2019. Estimation of environmental exposure: interpolation, kernel density estimation or snapshotting. Annals of GIS 25, 1 (2019), 1--8. https://doi.org/10.1080/19475683.2018.1555188
    [61]
    Yufei Tao, Xiaocheng Hu, Dong-Wan Choi, and Chin-Wan Chung. 2013. Approximate MaxRS in Spatial Databases. Proceedings of the VLDB Endowment 6, 13 (2013), 1546--1557. https://doi.org/10.14778/2536258.2536266
    [62]
    Lalita Thakali, Tae J. Kwon, and Liping Fu. 2015. Identification of crash hotspots using kernel density estimation and kriging methods: a comparison. Journal of Modern Transportation 23, 2 (2015), 93--106. https://doi.org/10.1007/s40534-015-0068-0
    [63]
    Jan Vahrenhold. 2007. Line-segment intersection made in-place. Computational Geometry 38, 3 (2007), 213--230. https://doi.org/10.1016/j.comgeo.2006.09.001
    [64]
    Zuyuan Wang, Christian Ginzler, and Lars T. Waser. 2020. Assessing structural changes at the forest edge using kernel density estimation. Forest Ecology and Management 456 (2020), 117639. https://doi.org/10.1016/j.foreco.2019.117639
    [65]
    Kun Xie, Kaan Ozbay, Abdullah Kurkcu, and Hong Yang. 2017. Analysis of Traffic Crashes Involving Pedestrians Using Big Data: Investigation of Contributing Factors and Identification of Hotspots. Risk Analysis 37, 8 (2017), 1459--1476. https://EconPapers.repec.org/RePEc:wly:riskan:v:37:y:2017:i:8:p:1459--1476
    [66]
    Liting Xu, Shuhe Zhao, Sophia Shuang Chen, Cheng Yu, and Buyun Lei. 2020. Analysis of arable land distribution around human settlements in the riparian area of Lake Tanganyika in Africa. Applied Geography 125 (2020), 102344. https://doi.org/10.1016/j.apgeog.2020.102344
    [67]
    Changjiang Yang, Ramani Duraiswami, and Larry S. Davis. 2004. Efficient Kernel Machines Using the Improved Fast Gauss Transform. In NIPS. 1561--1568. http://papers.nips.cc/paper/2550-efficient-kernel-machines-using-the-improved-fast-gauss-transform
    [68]
    Suyan Yi, Hongwei Wang, Shengtian Yang, Ling Xie, Yibo Gao, and Chen Ma. 2021. Spatial and Temporal Characteristics of Hand-Foot-and-Mouth Disease and Its Response to Climate Factors in the Ili River Valley Region of China. International Journal of Environmental Research and Public Health 18, 4 (2021).
    [69]
    Hao Yu, Pan Liu, Jun Chen, and Hao Wang. 2014. Comparative analysis of the spatial analysis methods for hotspot identification. Accident Analysis and Prevention 66 (2014), 80 -- 88. https://doi.org/10.1016/j.aap.2014.01.017
    [70]
    Kunxiaojia Yuan, Xiaoqiang Cheng, Zhipeng Gui, Fa Li, and Huayi Wu. 2019. A quad-tree-based fast and adaptive Kernel Density Estimation algorithm for heat-map generation. International Journal of Geographical Information Science 33, 12 (2019), 2455--2476. https://doi.org/10.1080/13658816.2018.1555831
    [71]
    Guiming Zhang, A-Xing Zhu, and Qunying Huang. 2017. A GPU-accelerated adaptive kernel density estimation approach for efficient point pattern analysis on spatial big data. International Journal of Geographical Information Science 31, 10 (2017), 2068--2097. https://doi.org/10.1080/13658816.2017.1324975
    [72]
    Xiangyu Zhao and Jiliang Tang. 2018. Crime in Urban Areas: A Data Mining Perspective. SIGKDD Explorations 20, 1 (2018), 1--12. https://doi.org/10.1145/3229329.3229331
    [73]
    Yan Zheng, Jeffrey Jestes, Jeff M. Phillips, and Feifei Li. 2013. Quality and efficiency for kernel density estimates in large data. In SIGMOD. 433--444.
    [74]
    Yan Zheng, Yi Ou, Alexander Lex, and Jeff M. Phillips. 2021. Visualization of Big Spatial Data Using Coresets for Kernel Density Estimates. IEEE Transactions on Big Data 7, 3 (2021), 524--534. https://doi.org/10.1109/TBDATA.2019.2913655
    [75]
    Yan Zheng and Jeff M. Phillips. 2015. L∞ Error and Bandwidth Selection for Kernel Density Estimates of Large Data. In SIGKDD. 1533--1542. https://doi.org/10.1145/2783258.2783357

    Cited By

    View all
    • (2024)LION: Fast and High-Resolution Network Kernel Density VisualizationProceedings of the VLDB Endowment10.14778/3648160.364816817:6(1255-1268)Online publication date: 3-May-2024
    • (2023)Kernel Density Visualization for Big Geospatial Data: Algorithms and Applications2023 24th IEEE International Conference on Mobile Data Management (MDM)10.1109/MDM58254.2023.00046(231-234)Online publication date: Jul-2023
    • (2022)Fast network k-function-based spatial analysisProceedings of the VLDB Endowment10.14778/3551793.355183615:11(2853-2866)Online publication date: 1-Jul-2022

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGMOD '22: Proceedings of the 2022 International Conference on Management of Data
    June 2022
    2597 pages
    ISBN:9781450392495
    DOI:10.1145/3514221
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 June 2022

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. SLAM
    2. exploratory operations
    3. hotspot detection
    4. kernel density visualization
    5. reduce the time complexity

    Qualifiers

    • Research-article

    Funding Sources

    • Hong Kong RGC Projects
    • the Science and Technology Development Fund Macau
    • The National Key Research and Development Plan of China
    • University of Macau
    • IRCMS

    Conference

    SIGMOD/PODS '22
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 785 of 4,003 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)82
    • Downloads (Last 6 weeks)2

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)LION: Fast and High-Resolution Network Kernel Density VisualizationProceedings of the VLDB Endowment10.14778/3648160.364816817:6(1255-1268)Online publication date: 3-May-2024
    • (2023)Kernel Density Visualization for Big Geospatial Data: Algorithms and Applications2023 24th IEEE International Conference on Mobile Data Management (MDM)10.1109/MDM58254.2023.00046(231-234)Online publication date: Jul-2023
    • (2022)Fast network k-function-based spatial analysisProceedings of the VLDB Endowment10.14778/3551793.355183615:11(2853-2866)Online publication date: 1-Jul-2022

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media