Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3519270.3538452acmconferencesArticle/Chapter ViewAbstractPublication PagespodcConference Proceedingsconference-collections
research-article

The Landscape of Distributed Complexities on Trees and Beyond

Published: 21 July 2022 Publication History
  • Get Citation Alerts
  • Abstract

    We study the local complexity landscape of locally checkable labeling (LCL) problems on constant-degree graphs with a focus on complexities below log* n. Our contribution is threefold: (1) Our main contribution is that we complete the classification of the complexity landscape of LCL problems on trees in the LOCAL model, by proving that every LCL problem with local complexity o (log* n) has actually complexityO(1). This result improves upon the previous speedup result from o (log log* n) to O(1) by [Chang, Pettie, FOCS 2017].(2) In the related LCA and VOLUME models [Alon, Rubinfeld, Vardi, Xie, SODA 2012, Rubinfeld, Tamir, Vardi, Xie, 2011, Rosenbaum, Suomela, PODC 2020],we prove the same speedup from o (log* n) to O(1) for all constant-degree graphs.

    Supplementary Material

    MP4 File (S1-T4.mp4)
    Presentation video

    References

    [1]
    Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. 2012. Space-efficient local computation algorithms. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms. SIAM, 1132--1139.
    [2]
    Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Mikaël Rabie, and Jukka Suomela. 2019. The Distributed Complexity of Locally Checkable Problems on Paths is Decidable. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, Peter Robinson and Faith Ellen (Eds.). ACM, 262--271. https: //doi.org/10.1145/3293611.3331606
    [3]
    Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti, and Jukka Suomela. 2020. Classification of Distributed Binary Labeling Problems. In 34th International Symposium on Distributed Computing, DISC 2020, October 12--16, 2020, Virtual Conference. 17:1--17:17. https://doi.org/10.4230/LIPIcs. DISC.2020.17 arXiv:1911.13294
    [4]
    Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka Suomela. 2019. Lower bounds for maximal matchings and maximal independent sets. In Proc. Foundations of Computer Science (FOCS).
    [5]
    Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. 2021. Distributed -Coloring Plays Hide-and-Seek. CoRR abs/2110.00643 (2021). arXiv:2110.00643 https://arxiv.org/abs/2110.00643
    [6]
    Alkida Balliu, Sebastian Brandt, and Dennis Olivetti. 2020. Distributed Lower Bounds for Ruling Sets. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16--19, 2020. 365--376. https://doi.org/10.1109/FOCS46700.2020.00042 arXiv:2004.08282
    [7]
    Alkida Balliu, Sebastian Brandt, Dennis Olivetti, Jan Studený, Jukka Suomela, and Aleksandr Tereshchenko. 2021. Locally Checkable Problems in Rooted Trees. In PODC '21: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26--30, 2021, Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen (Eds.). ACM, 263--272. https://doi.org/10.1145/3465084.3467934
    [8]
    Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. 2020. Almost global problems in the LOCAL model. Distributed Computing (2020), 1--23.
    [9]
    Alkida Balliu, Keren Censor-Hillel, Yannic Maus, Dennis Olivetti, and Jukka Suomela. 2021. Locally Checkable Labelings with Small Messages. In 35th International Symposium on Distributed Computing, DISC 2021, October 4--8, 2021, Freiburg, Germany (Virtual Conference) (LIPIcs, Vol. 209), Seth Gilbert (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 8:1--8:18. https: //doi.org/10.4230/LIPIcs.DISC.2021.8
    [10]
    Alkida Balliu, Juho Hirvonen, Janne H Korhonen, Tuomo Lempiäinen, Dennis Olivetti, and Jukka Suomela. 2018. New classes of distributed time complexity. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. 1307--1318.
    [11]
    Alkida Balliu, Juho Hirvonen, Dennis Olivetti, and Jukka Suomela. 2019. Hardness of minimal symmetry breaking in distributed computing. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. 369--378.
    [12]
    Anton Bernshteyn. 2020. Distributed Algorithms, the Lovász Local Lemma, and Descriptive Combinatorics. arXiv preprint arXiv:2004.04905 (2020).
    [13]
    Sebastian Brandt. 2019. An Automatic Speedup Theorem for Distributed Problems. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019. 379--388. https: //doi.org/10.1145/3293611.3331611
    [14]
    Sebastian Brandt, Yi-Jun Chang, Jan Grebík, Christoph Grunau, Václav Rozhon, and Zoltán Vidnyánszky. 2022. Local Problems on Trees from the Perspectives of Distributed Algorithms, Finitary Factors, and Descriptive Combinatorics. In 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA (LIPIcs, Vol. 215), Mark Braverman (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 29:1--29:26. https://doi.org/ 10.4230/LIPIcs.ITCS.2022.29
    [15]
    S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempiäinen, J. Rybicki, J. Suomela, and J. Uitto. 2016. A lower bound for the distributed Lovász local lemma. In Proc. 48th ACM Symp. on Theory of Computing (STOC). 479--488.
    [16]
    Sebastian Brandt, Christoph Grunau, and Václav Rozhon. 2021. The Randomized Local Computation Complexity of the Lovász Local Lemma. In PODC '21: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26--30, 2021, Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen (Eds.). ACM, 307--317. https://doi.org/10.1145/3465084.3467931
    [17]
    Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Patric R. J. Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemyslaw Uznanski. 2017. LCL Problems on Grids. In Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July 25--27, 2017, Elad Michael Schiller and Alexander A. Schwarzmann (Eds.). ACM, 101--110. https://doi.org/10.1145/3087801.3087833
    [18]
    Yi-Jun Chang, Jan Studený, and Jukka Suomela. 2021. Distributed Graph Problems Through an Automata-Theoretic Lens. In Structural Information and Communication Complexity - 28th International Colloquium, SIROCCO 2021, Wroclaw, Poland, June 28 - July 1, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12810), Tomasz Jurdzinski and Stefan Schmid (Eds.). Springer, 31--49. https://doi.org/10.1007/978--3-030--79527--6_3
    [19]
    Yi-Jun Chang. 2020. The Complexity Landscape of Distributed Locally Checkable Problems on Trees. In 34th International Symposium on Distributed Computing (DISC 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 179), Hagit Attiya (Ed.). Schloss Dagstuhl--Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 18:1--18:17. https://doi.org/10.4230/LIPIcs.DISC.2020.18
    [20]
    Y.-J. Chang, Q. He,W. Li, S. Pettie, and J. Uitto. 2018. The complexity of distributed edge coloring with small palettes. In Proc. 29th ACM-SIAM Symp. on Discrete Algorithms. 2633--2652.
    [21]
    Y.-J. Chang, T. Kopelowitz, and S. Pettie. 2016. An Exponential Separation Between Randomized and Deterministic Complexity in the LOCAL Model. In Proc. 57th IEEE Symp. on Foundations of Computer Science (FOCS).
    [22]
    Yi-Jun Chang and Seth Pettie. 2017. A Time Hierarchy Theorem for the LOCAL Model. In Proc. 58th IEEE Symp. on Foundations of Computer Science (FOCS). 156--167.
    [23]
    Richard Cole and Uzi Vishkin. 1986. Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking. Information and Control 70, 1 (1986), 32--53.
    [24]
    Clinton T. Conley, Jan Grebík, and Oleg Pikhurko. 2020. Divisibility of Spheres with Measurable Pieces. arXiv:2012.07567 [math.MG]
    [25]
    Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. 2017. Deterministic Distributed Edge-Coloring via Hypergraph Maximal Matching. In Proc. 58th IEEE Symp. on Foundations of Computer Science (FOCS).
    [26]
    Mohsen Ghaffari, Christoph Grunau, and Václav Rozhon. 2021. Improved Deterministic Network Decomposition. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, Dániel Marx (Ed.). SIAM, 2904--2923. https://doi.org/10.1137/1.9781611976465.173
    [27]
    Mohsen Ghaffari, David Harris, and Fabian Kuhn. 2018. On derandomizing local distributed algorithms. In Proc. Foundations of Computer Science (FOCS). 662--673.
    [28]
    Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. 2019. Conditional Hardness Results for Massively Parallel Computation from Distributed Lower Bounds. In Proc. Foundations of Computer Science (FOCS).
    [29]
    Mohsen Ghaffari and Hsin-Hao Su. 2017. Distributed degree splitting, edge coloring, and orientations. In Proceedings of the Twenty-Eighth Annual ACMSIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 2505--2523.
    [30]
    Mika Göös, Juho Hirvonen, Reut Levi, Moti Medina, and Jukka Suomela. 2016. Non-local Probes Do Not Help with Many Graph Problems. In Distributed Computing, Cyril Gavoille and David Ilcinkas (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 201--214.
    [31]
    Lukasz Grabowski, András Máthé, and Oleg Pikhurko. 2017. Measurable circle squaring. Ann. of Math. 185, 2 (2017), 671--710.
    [32]
    Jan Grebík and Václav Rozho. 2021. Of Toasts and Tails. arXiv:2103.08394 [math.CO]
    [33]
    Alexander Holroyd, Thomas Liggett, et al. 2015. Symmetric 1-dependent colorings of the integers. Electronic Communications in Probability 20 (2015).
    [34]
    Alexander E. Holroyd, Oded Schramm, and David B. Wilson. 2017. Finitary coloring. Ann. Probab. 45, 5 (09 2017), 2867--2898. https://doi.org/10.1214/16- AOP1127
    [35]
    Miklós Laczkovich. 1990. Equidecomposability and discrepancy; a solution of Tarski's circle-squaring problem. J. Reine Angew. Math. 404 (1990), 77--117.
    [36]
    Nathan Linial. 1987. Distributive graph algorithms -- Global solutions from local data. In Proc. 28th IEEE Symp. on Foundations of Computer Science (FOCS). 331--335.
    [37]
    Nati Linial. 1992. Locality in Distributed Graph Algorithms. SIAM J. Comput. 21, 1 (1992), 193--201.
    [38]
    Andrew S. Marks and Spencer T. Unger. 2017. Borel circle squaring. Ann. of Math. 186, 2 (2017), 581--605.
    [39]
    Moni Naor. 1991. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM Journal on Discrete Mathematics 4, 3 (1991), 409--412.
    [40]
    Moni Naor and Larry Stockmeyer. 1995. What Can Be Computed Locally? SIAM J. Comput. 24, 6 (1995), 1259--1277.
    [41]
    Will Rosenbaum and Jukka Suomela. 2020. Seeing Far vs. Seeing Wide: Volume Complexity of Local Graph Problems. In Proceedings of the 39th Symposium on Principles of Distributed Computing (Virtual Event, Italy) (PODC '20). Association for Computing Machinery, New York, NY, USA, 89--98. https://doi.org/10.1145/ 3382734.3405721
    [42]
    Václav Rozho and Mohsen Ghaffari. 2020. Polylogarithmic-Time Deterministic Network Decomposition and Distributed Derandomization. In Proc. Symposium on Theory of Computation (STOC).
    [43]
    R. Rubinfeld, G. Tamir, S. Vardi, and N. Xie. 2011. Fast Local Computation Algorithms. In Proc. 2nd Symp. on Innovations in Computer Science (ICS). 223--238.
    [44]
    Yinon Spinka. 2020. Finitely dependent processes are finitary. Ann. Probab. 48, 4 (2020), 2088--2117.
    [45]
    Jukka Suomela. 2020. Landscape of Locality. https://jukkasuomela.fi/landscapeof- locality/.

    Cited By

    View all

    Index Terms

    1. The Landscape of Distributed Complexities on Trees and Beyond

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      PODC'22: Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing
      July 2022
      509 pages
      ISBN:9781450392624
      DOI:10.1145/3519270
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 21 July 2022

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. distributed complexity theory
      2. gap result
      3. graph problems
      4. lcl problems
      5. local model
      6. locality
      7. volume model

      Qualifiers

      • Research-article

      Funding Sources

      Conference

      PODC '22
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 740 of 2,477 submissions, 30%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)20
      • Downloads (Last 6 weeks)0

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media