Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3519391.3522754acmotherconferencesArticle/Chapter ViewAbstractPublication PagesahsConference Proceedingsconference-collections
research-article

The Reference Frame of Robotic Limbs Contributes to the Sense of Embodiment and Motor Control Process

Published: 18 April 2022 Publication History

Abstract

The robotic limbs using a body remapping approach often follow either the user’s reference frame 1) fixed outside the user’s body (Space frame), 2) centered on a user’s torso (Torso frame), or 3) centered on a user’s head (Head frame). In this study, we investigate the effect of the reference frame on the sense of embodiment and the user’s motor control process. We asked 12 participants to perform some point-to-point tasks with the virtual robotic limbs remapped to the participants’ feet. The virtual robotic limbs tip followed the participants’ feet and each reference frame condition (Space frame, Torso frame, and Head frame). As a result, the reaction time, the movement straightness, and the movement priority were significantly high rate in the Torso frame condition. The subjective score on the sense of embodiment showed that the reference frame condition contributed to the sense of embodiment.

References

[1]
Elahe Abdi, Etienne Burdet, Mohamed Bouri, and Hannes Bleuler. 2015. Control of a supernumerary robotic hand by foot: An experimental study in virtual reality. PloS one 10, 7 (Jul 2015), e0134501. https://doi.org/10.1371/journal.pone.0134501
[2]
Elahe Abdi, Etienne Burdet, Mohamed Bouri, Sharifa Himidan, and Hannes Bleuler. 2016. In a demanding task, three-handed manipulation is preferred to two-handed manipulation. Scientific reports 6, 1 (Feb 2016), 1–11. https://doi.org/10.1038/srep21758
[3]
Mohammed Al-Sada, Thomas Höglund, Mohamed Khamis, Jaryd Urbani, and Tatsuo Nakajima. 2019. Orochi: Investigating Requirements and Expectations for Multipurpose Daily Used Supernumerary Robotic Limbs. In Proceedings of the 10th Augmented Human International Conference 2019 (Reims, France) (AH2019). Association for Computing Machinery, New York, NY, USA, Article 37, 9 pages. https://doi.org/10.1145/3311823.3311850
[4]
Laura Aymerich-Franch, Damien Petit, Gowrishankar Ganesh, and Abderrahmane Kheddar. 2017. Object touch by a humanoid robot avatar induces haptic sensation in the real hand. Journal of Computer-Mediated Communication 22, 4 (Jul 2017), 215–230. https://doi.org/10.1111/jcc4.12188
[5]
Matthew Botvinick and Jonathan Cohen. 1998. Rubber hands ‘feel’touch that eyes see. Nature 391, 6669 (Feb 1998), 756–756. https://doi.org/10.1038/35784
[6]
Yale E Cohen and Richard A Andersen. 2002. A common reference frame for movement plans in the posterior parietal cortex. Nature Reviews Neuroscience 3, 7 (Jul 2002), 553–562. https://doi.org/10.1038/nrn873
[7]
Jonathan B Dingwell, Christopher D Mah, and Ferdinando A Mussa-Ivaldi. 2002. Manipulating objects with internal degrees of freedom: evidence for model-based control. Journal of Neurophysiology 88, 1 (Jul 2002), 222–235. https://doi.org/10.1152/jn.2002.88.1.222
[8]
Tamar Flash and Neville Hogan. 1985. The coordination of arm movements: an experimentally confirmed mathematical model. Journal of Neuroscience 5, 7 (Jul 1985), 1688–1703. https://doi.org/10.1523/JNEUROSCI.05-07-01688.1985
[9]
O. Fukuda, T. Tsuji, M. Kaneko, and A. Otsuka. 2003. A human-assisting manipulator teleoperated by EMG signals and arm motions. IEEE Transactions on Robotics and Automation 19, 2 (Apr 2003), 210–222. https://doi.org/10.1109/TRA.2003.808873
[10]
Takayoshi Hagiwara, Gowrishankar Ganesh, Maki Sugimoto, Masahiko Inami, and Michiteru Kitazaki. 2020. Individuals Prioritize the Reach Straightness and Hand Jerk of a Shared Avatar over Their Own. iScience 23, 12 (Dec 2020), 101732. https://doi.org/10.1016/j.isci.2020.101732
[11]
Yukiko Iwasaki, Kozo Ando, Shuhei Iizuka, Michiteru Kitazaki, and Hiroyasu Iwata. 2020. Detachable Body: The Impact of Binocular Disparity and Vibrotactile Feedback in Co-Presence Tasks. IEEE Robotics and Automation Letters 5, 2 (Apr 2020), 3477–3484. https://doi.org/10.1109/LRA.2020.2977320
[12]
Anja Jackowski, Marion Gebhard, and Roland Thietje. 2017. Head motion and head gesture-based robot control: A usability study. IEEE Transactions on Neural Systems and Rehabilitation Engineering 26, 1 (Jan 2017), 161–170. https://doi.org/10.1109/TNSRE.2017.2765362
[13]
Andreas Kalckert and H Henrik Ehrsson. 2014. The moving rubber hand illusion revisited: Comparing movements and visuotactile stimulation to induce illusory ownership. Consciousness and Cognition 26 (May 2014), 117–132. https://doi.org/10.1016/j.concog.2014.02.003
[14]
Konstantina Kilteni, Jean-Marie Normand, Maria V Sanchez-Vives, and Mel Slater. 2012. Extending body space in immersive virtual reality: a very long arm illusion. PloS one 7, 7 (Jul 2012), e40867. https://doi.org/10.1371/journal.pone.0040867
[15]
Bouke N. Krom, Milène Catoire, Alexander Toet, Roelof J. E. van Dijk, and Jan B.F. van Erp. 2019. Effects of Likeness and Synchronicity on the Ownership Illusion over a Moving Virtual Robotic Arm and Hand. In 2019 IEEE World Haptics Conference (WHC). IEEE, Tokyo, Japan, 49–54. https://doi.org/10.1109/WHC.2019.8816112
[16]
Paul D. Marasco, Jacqueline S. Hebert, Jon W. Sensinger, Courtney E. Shell, Jonathon S. Schofield, Zachary C. Thumser, Raviraj Nataraj, Dylan T. Beckler, Michael R. Dawson, Dan H. Blustein, Satinder Gill, Brett D. Mensh, Rafael Granja-Vazquez, Madeline D. Newcomb, Jason P. Carey, and Beth M. Orzell. 2018. Illusory movement perception improves motor control for prosthetic hands. Science Translational Medicine 10, 432 (Mar 2018), eaao6990. https://doi.org/10.1126/scitranslmed.aao6990
[17]
Paul D Marasco, Keehoon Kim, James Edward Colgate, Michael A Peshkin, and Todd A Kuiken. 2011. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain 134, 3 (Mar 2011), 747–758. https://doi.org/10.1093/brain/awq361
[18]
Joy Oh, Kozo Ando, Shuhei Iizuka, Lena Guinot, Fumihiro Kato, and Hiroyasu Iwata. 2020. 3D Head Pointer: A manipulation method that enables the spatial localization for a wearable robot arm by head bobbing. In 2020 23rd International Symposium on Measurement and Control in Robotics (ISMCR). IEEE, Budapest, Hungary, 1–6. https://doi.org/10.1109/ISMCR51255.2020.9263775
[19]
Federico Parietti and H Harry Asada. 2014. Supernumerary robotic limbs for aircraft fuselage assembly: body stabilization and guidance by bracing. In 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, Hong Kong, China, 1176–1183. https://doi.org/10.1109/ICRA.2014.6907002
[20]
James F.A. Poulet and Berthold Hedwig. 2007. New insights into corollary discharges mediated by identified neural pathways. Trends in Neurosciences 30, 1 (Jan 2007), 14–21. https://doi.org/10.1016/j.tins.2006.11.005
[21]
Domenico Prattichizzo, Monica Malvezzi, Irfan Hussain, and Gionata Salvietti. 2014. The sixth-finger: a modular extra-finger to enhance human hand capabilities. In The 23rd IEEE International Symposium on Robot and Human Interactive Communication. IEEE, Edinburgh, UK, 993–998. https://doi.org/10.1109/ROMAN.2014.6926382
[22]
Domenico Prattichizzo, Maria Pozzi, Tommaso Lisini Baldi, Monica Malvezzi, Irfan Hussain, Simone Rossi, and Gionata Salvietti. 2021. Human augmentation by wearable supernumerary robotic limbs: review and perspectives. Progress in Biomedical Engineering 3, 4 (Sep 2021), 042005. https://doi.org/10.1088/2516-1091/ac2294
[23]
Catherine Preston. 2013. The role of distance from the body and distance from the real hand in ownership and disownership during the rubber hand illusion. Acta Psychologica 142, 2 (Feb 2013), 177–183. https://doi.org/10.1016/j.actpsy.2012.12.005
[24]
Lisa M Pritchett, Michael J Carnevale, and Laurence R Harris. 2012. Reference frames for coding touch location depend on the task. Experimental Brain Research 222, 4 (Oct 2012), 437–445. https://doi.org/10.1007/s00221-012-3231-4
[25]
MHD Yamen Saraiji, Tomoya Sasaki, Kai Kunze, Kouta Minamizawa, and Masahiko Inami. 2018. MetaArms: Body Remapping Using Feet-Controlled Artificial Arms. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (Berlin, Germany) (UIST ’18). Association for Computing Machinery, New York, NY, USA, 65–74. https://doi.org/10.1145/3242587.3242665
[26]
Tomoya Sasaki, MHD Yamen Saraiji, Charith Lasantha Fernando, Kouta Minamizawa, and Masahiko Inami. 2017. MetaLimbs: multiple arms interaction metamorphism. In ACM SIGGRAPH 2017 Emerging Technologies (Los Angeles, California) (SIGGRAPH ’17). Association for Computing Machinery, New York, NY, USA, Article 16, 2 pages. https://doi.org/10.1145/3084822.3084837
[27]
Matthew Schiefer, Daniel Tan, Steven M Sidek, and Dustin J Tyler. 2015. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. Journal of neural engineering 13, 1 (Dec 2015), 016001. https://doi.org/10.1088/1741-2560/13/1/016001
[28]
Ahmed W Shehata, Leonard F Engels, Marco Controzzi, Christian Cipriani, Erik J Scheme, and Jonathon W Sensinger. 2018. Improving internal model strength and performance of prosthetic hands using augmented feedback. Journal of neuroengineering and rehabilitation 15, 1 (Jul 2018), 1–12. https://doi.org/10.1186/s12984-018-0417-4
[29]
Daniel W Tan, Matthew A Schiefer, Michael W Keith, James Robert Anderson, Joyce Tyler, and Dustin J Tyler. 2014. A neural interface provides long-term stable natural touch perception. Science translational medicine 6, 257 (Oct 2014), 257ra138–257ra138. https://doi.org/10.1126/scitranslmed.3008669
[30]
Eduardo Velloso, Dominik Schmidt, Jason Alexander, Hans Gellersen, and Andreas Bulling. 2015. The Feet in Human–Computer Interaction: A Survey of Foot-Based Interaction. ACM Comput. Surv. 48, 2 (Nov 2015), 1–35. https://doi.org/10.1145/2816455

Cited By

View all
  • (2023)Investigating the perceptual attribution of a virtual robotic limb synchronizing with hand and foot simultaneouslyFrontiers in Virtual Reality10.3389/frvir.2023.12103034Online publication date: 7-Nov-2023

Index Terms

  1. The Reference Frame of Robotic Limbs Contributes to the Sense of Embodiment and Motor Control Process
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Other conferences
        AHs '22: Proceedings of the Augmented Humans International Conference 2022
        March 2022
        350 pages
        ISBN:9781450396325
        DOI:10.1145/3519391
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 18 April 2022

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. motor control process
        2. reference frame
        3. robotic limbs
        4. sense of embodiment

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Funding Sources

        • JST SPRING
        • JST ERATO

        Conference

        AHs 2022
        AHs 2022: Augmented Humans 2022
        March 13 - 15, 2022
        Kashiwa, Chiba, Japan

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)19
        • Downloads (Last 6 weeks)1
        Reflects downloads up to 04 Feb 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2023)Investigating the perceptual attribution of a virtual robotic limb synchronizing with hand and foot simultaneouslyFrontiers in Virtual Reality10.3389/frvir.2023.12103034Online publication date: 7-Nov-2023

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media