Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3524059.3532367acmconferencesArticle/Chapter ViewAbstractPublication PagesicsConference Proceedingsconference-collections
research-article
Open access

KrakenOnMem: a memristor-augmented HW/SW framework for taxonomic profiling

Published: 28 June 2022 Publication History

Abstract

State-of-the-art taxonomic profilers that comprise the first step in larger-context metagenomic studies have proven to be computationally intensive, i.e., while accurate, they come at the cost of high latency and energy consumption. Table Lookup operation is a primary bottleneck of today's profilers. In this paper, we first propose TL-PIM, a hardware accelerator based on the processing-in-memory (PIM) paradigm to accelerate Table Lookup. TL-PIM leverages the in-memory compute capability of emerging memory technologies along with intelligent data mapping. Then, we integrate TL-PIM into Kraken2, a state-of-the-art metagenomic profiler, and build an HW/SW co-designed profiler, called KrakenOnMem. Results from a silicon-based prototype of our emerging memory validate the design and required operations on a smaller scale. Our large-scale calibrated simulations show that KrakenOnMem can provide an average of 61.3% speedup compared to original Kraken2 for end-to-end profiling. Additionally, our design improves the energy consumption by orders of magnitude compared to the original Kraken2 while incurring a negligible area overhead.

References

[1]
S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das, "Compute Caches," in HPCA, 2017.
[2]
M. Alser, T. Shahroodi, J. Gomez-Luna, C. Alkan, and O. Mutlu, "SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs, GPUs, and FPGAs," Bioinformatics, 2020.
[3]
A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S. Williams, P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy et al., "PUMA: A programmable ultra-efficient memristor-based accelerator for machine learning inference," in ASPLOS, 2019.
[4]
S. S. Banerjee, M. El-Hadedy, J. B. Lim, Z. T. Kalbarczyk, D. Chen, S. S. Lumetta, and R. K. Iyer, "Asap: Accelerated short-read alignment on programmable hardware" IEEE Transactions on Computers, 2018.
[5]
Barba, M, Czosnek, H and Hadidi, A, "Cost in US Dollars per Raw Megabase of DNA Sequence," https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data.
[6]
A. Brady and S. Salzberg, "PhymmBL expanded: confidence scores, custom databases, parallelization and more," Nature methods, 2011.
[7]
F. P. Breitwieser, J. Lu, and S. L. Salzberg, "A Review of Methods and Databases for Metagenomic Classification and Assembly," Briefings in bioinformatics, 2019.
[8]
D. S. Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subramanian, J. S. Kim, R. Ausavarungnirun, M. Alser, J. Gomez-Luna, A. Boroumand et al., "GenASM: A high-performance, low-power approximate string matching acceleration framework for genome sequence analysis," in MICRO, 2020.
[9]
E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith, D. Druist, D. Lottis, V. Nikitin, X. Tang, S. Watts, S. Wang et al., "Advances and future prospects of spin-transfer torque random access memory," IEEE Transactions on Magnetics, 2010.
[10]
L. Cheng, Y. Li, K.-S. Yin, S.-Y. Hu, Y.-T. Su, M.-M. Jin, Z.-R. Wang, T.-C. Chang, and X.-S. Miao, "Functional demonstration of a memristive arithmetic logic unit (memalu) for in-memory computing," Advanced Functional Materials, 2019.
[11]
P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, "PRIME: A novel processing-in-memory architecture for neural network computation in reram-based main memory," ISCA, 2016.
[12]
J. Daily, "Parasail: SIMD C Library for Global, Semi-global, and Local Pairwise Sequence Alignments," BMC bioinformatics, 2016.
[13]
J. Dröge, I. Gregor, and A. C. McHardy, "Taxator-tk: precise taxonomic assignment of metagenomes by fast approximation of evolutionary neighborhoods," Bioinformatics, 2015.
[14]
D. D'Agostino, L. Morganti, E. Corni, D. Cesini, and I. Merelli, "Combining edge and cloud computing for low-power, cost-effective metagenomics analysis" Future Generation Computer Systems, 2019.
[15]
C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaaauw, and R. Das, "Neural cache: Bit-serial in-cache acceleration of deep neural networks," in ISCA, 2018.
[16]
X. Fei, Z. Dan, L. Lina, M. Xin, and Z. Chunlei, "Fpgasw: Accelerating large-scale smith-waterman sequence alignment application with backtracking on fpga linear systolic array," Interdisciplinary Sciences: Computational Life Sciences, 2018.
[17]
J. D. Ferreira, G. Falcao, J. Gómez-Luna, M. Alser, L. Orosa, M. Sadrosadati, J. S. Kim, G. F. Oliveira, T. Shahroodi, A. Nori et al., "pLUTo: In-DRAM Lookup Tables to Enable Massively Parallel General-Purpose Computation," arXiv preprint, 2021.
[18]
B. Fjukstad and L. A. Bongo, "A review of scalable bioinformatics pipelines," Data Science and Engineering, 2017.
[19]
D. Fujiki, S. Mahlke, and R. Das, "Duality cache for data parallel acceleration," in ISCA, 2019.
[20]
G. V. RESEARCH, "Metagenomics market size, share and trends analysis report by product (sequencing and data analytics), by technology (sequencing, function), by application (environmental), and segment forecasts, 2018 - 2025." 2017.
[21]
E. Georganas, A. Buluç, J. Chapman, L. Oliker, D. Rokhsar, and K. Yelick, "meraligner: A fully parallel sequence aligner," in IPDPS, 2015.
[22]
I. Gregor, J. Dröge, M. Schirmer, C. Quince, and A. C. McHardy, "PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes," PeerJ, 2016.
[23]
S. Hamdioui, L. Xie, H. A. Du Nguyen, M. Taouil, K. Bertels, H. Corporaal, H. Jiao, F. Catthoor, D. Wouters, L. Eike et al., "Memristor based computation-in-memory architecture for data-intensive applications," in DATE, 2015.
[24]
J. Handelsman, M. R. Rondon, S. F. Brady, J. Clardy, and R. M. Goodman, "Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products," Chemistry & biology, 1998.
[25]
E. J. Houtgast, V.-M. Sima, K. Bertels, and Z. Al-Ars, "An FPGA-based systolic array to accelerate the BWA-MEM genomic mapping algorithm," in SAMOS, 2015.
[26]
W. Huangfu, X. Li, S. Li, X. Hu, P. Gu, and Y. Xie, "Medal: Scalable dimm based near data processing accelerator for dna seeding algorithm," in MICRO, 2019.
[27]
W. Huangfu, K. T. Malladi, S. Li, P. Gu, and Y. Xie, "NEST: DIMM based near-data-processing accelerator for K-mer counting," in ICCAD, 2020.
[28]
D. H. Huson, S. Beier, I. Flade, A. Górska, M. El-Hadidi, S. Mitra, H.-J. Ruscheweyh, and R. Tappu, "MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data," PLoS computational biology, 2016.
[29]
Ian Curtis., "The Intel Skylake-X Review: Core i9 7900X, i7 7820X and i7 7800X Tested: Die Size Estimates and Arrangements." https://www.anandtech.com/show/11550/the-intel-skylakex-review-core-i9-7900x-i7-7820x-and-i7-7800x-tested/6, 2017.
[30]
Intel Corp., "Intel® Performance Counter Monitor." https://www.intel.com/software/pcm, 2017.
[31]
R. Kaplan, L. Yavits, and R. Ginosar, "RASSA: resistive prealignment accelerator for approximate DNA long read mapping," IEEE Micro, 2018.
[32]
G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi, and A. Sebastian, "In-memory hyperdimensional computing," Nature Electronics, 2020.
[33]
R. Kobus, J. M. Abuín, A. Müller, S. L. Hellmann, J. C. Pichel, T. F. Pena, A. Hildebrandt, T. Hankeln, and B. Schmidt, "A big data approach to metagenomics for all-food-sequencing," BMC bioinformatics, 2020.
[34]
R. Kobus, C. Hundt, A. Müller, and B. Schmidt, "Accelerating metagenomic read classification on CUDA-enabled GPUs," BMC bioinformatics, 2017.
[35]
M. Kokot, M. Długosz, and S. Deorowicz, "KMC 3: counting and manipulating k-mer statistics," Bioinformatics, 2017.
[36]
M. Komalan, S. Sakhare, T. H. Bao, S. Rao, W. Kim, C. Tenllado, J. I. Gómez, G. S. Kar, A. Furnemont, and F. Catthoor, "Cross-layer design and analysis of a low power, high density STT-MRAM for embedded systems," in ISCAS, 2017.
[37]
S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser, "MAGIC---Memristor-aided logic" TCAS II, 2014.
[38]
A. F. Laguna, H. Gamaarachchi, X. Yin, M. Niemier, S. Parameswaran, and X. S. Hu, "Seed-and-vote based in-memory accelerator for dna read mapping" in ICCAD, 2020.
[39]
B. Langmead, C. Wilks, V. Antonescu, and R. Charles, "Scaling read aligners to hundreds of threads on general-purpose processors," Bioinformatics, 2019.
[40]
N. LaPierre, M. Alser, E. Eskin, D. Koslicki, and S. Mangul, "Metalign: Efficient Alignment-Based Metagenomic Profiling via Containment Min Hash," BioRxiv, 2020.
[41]
N. LaPierre, S. Mangul, M. Alser, I. Mandric, N. C. Wu, D. Koslicki, and E. Eskin, "MiCoP: Microbial Community Profiling Method for Detecting Viral and Fungal Organisms in Metagenomic Samples," BMC genomics, 2019.
[42]
B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, "Phase change memory architecture and the quest for scalability," Communications of the ACM, 2010.
[43]
J. Leipzig, "A review of bioinformatic pipeline frameworks," Briefings in bioinformatics, 2017.
[44]
S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, "Drisa: A dram-based reconfigurable in-situ accelerator," in MICRO, 2017.
[45]
S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, "Pinatubo: A processing-in-memory architecture for bulk bitwise operations in emerging non-volatile memories," in DAC, 2016.
[46]
B. Liu, T. Gibbons, M. Ghodsi, T. Treangen, and M. Pop, "Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences," Genome biology, 2011.
[47]
Y. Liu and B. Schmidt, "GSWABE: faster GPU-accelerated sequence alignment with optimal alignment retrieval for short DNA sequences," Concurrency and Computation: Practice and Experience, 2015.
[48]
Y. Liu, A. Wirawan, and B. Schmidt, "CUDASW++ 3.0: Accelerating Smith-Waterman Protein Database Search by Coupling CPU and GPU SIMD Instructions," BMC bioinformatics, 2013.
[49]
Q. Lou, S. C.Janga, and L. Jiang, "Helix: Algorithm/Architecture Co-design for Accelerating Nanopore Genome Base-calling," in PCAT, 2020.
[50]
Q. Lou and L. Jiang, "BRAWL: A Spintronics-Based Portable Basecalling-in-Memory Architecture for Nanopore Genome Sequencing" IEEE Computer Architecture Letters 2018.
[51]
J. Lu F. P. Breitwieser P. Thielen and S. L. Salzberg "Bracken: Estimating Species Abundance in Metagenomics Data " PeerJ Computer Science, 2017.
[52]
D. Mayhew and V. Krishnan "PCI Express and Advanced Switching: Evolutionary path to building next generation interconnects," in 11th Symposium on High Performance Interconnects, 2003.
[53]
D. Mayhew and V. Krishnan, "Pci express and advanced switching: Evolutionary path to building next generation interconnects," in HOTI, 2003.
[54]
A. B. McIntyre, R. Ounit, E. Afshinnekoo, R. J. Prill, E. Hénaff, N. Alexander, S. S. Minot, D. Danko, J. Foox, S. Ahsanuddin et al., "Comprehensive benchmarking and ensemble approaches for metagenomic classifiers," Genome biology, 2017.
[55]
I. Merelli, L. Morganti, E. Corni, C. Pellegrino, D. Cesini, L. Roverelli, G. Zereik, and D. D'Agostino, "Low-power portable devices for metagenomics analysis: Fog computing makes bioinformatics ready for the Internet of Things," Future Generation Computer Systems, 2018.
[56]
F. Meyer, A. Fritz, Z.-L. Deng, D. Koslicki, A. Gurevich, G. Robertson, M. Alser, D. Antipov, F. Beghini, D. Bertrand et al., "Critical Assessment of Metagenome Interpretation-the second round of challenges," bioRxiv, 2021.
[57]
F. Meyer, S. Bagchi, S. Chaterji, W. Gerlach, A. Grama, T. Harrison, T. Paczian, W. L. Trimble, and A. Wilke, "MG-RAST version 4---lessons learned from a decade of low-budget ultra-high-throughput metagenome analysis," Briefings in bioinformatics, 2019.
[58]
MNEMOSENE partners, "The MNEMOSENE project." http://www.mnemosene.eu/, 2020.
[59]
H. A. D. Nguyen, J. Yu, M. A. Lebdeh, M. Taouil, S. Hamdioui, and F. Catthoor, "A classification of memory-centric computing" JETC, 2020.
[60]
R. Ounit, S. Wanamaker, T.J. Close, and S. Lonardi, "CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers," BMC genomics, 2015.
[61]
PCI-SIG, "PCI-E Specification." https://pcisig.com/specifications.
[62]
L. Pentecost, A. Hankin, M. Donato, M. Hempstead, G.-Y. Wei, and D. Brooks, "NVMExplorer: A Framework for Cross-Stack Comparisons of Embedded NonVolatile Memories" HPCA, 2021.
[63]
A. E. Pérez-Cobas, L. Gomez-Valero, and C. Buchrieser, "Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses" Microbial Genomics, 2020.
[64]
S. Rao, W. Kim, S. van Beek, S. Kundu, M. Perumkunnil, S. Cosemans, F. Yasin, S. Couet, R. Carpenter, B. O'Sullivan et al., "STT-MRAM array performance improvement through optimization of Ion Beam Etch and MTJ for Last-Level Cache application" in IMW, 2021.
[65]
G. Rizk and D. Lavenier, "GASSST: global alignment short sequence search tool" Bioinformatics, 2010.
[66]
M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke, "Reducing storage requirements for biological sequence comparison" Bioinformatics, 2004.
[67]
M. R. Rondon, P. R. August, A. D. Bettermann, S. F. Brady, T. H. Grossman, M. R. Liles, K. A. Loiacono, B. A. Lynch, I. A. MacNeil, C. Minor et al., "Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms" Appl. Environ. Microbiol., 2000.
[68]
A. Sczyrba, P. Hofmann, P. Belmann, D. Koslicki, S. Janssen, J. Dröge, I. Gregor, S. Majda, J. Fiedler, E. Dahms et al., "Critical assessment of metagenome interpretation---a benchmark of metagenomics software" Nature methods, 2017.
[69]
N. Segata, L. Waldron, A. Ballarini, V. Narasimhan, O. Jousson, and C. Hutten-hower, "Metagenomic microbial community profiling using unique clade-specific marker genes" Nature methods, 2012.
[70]
N. Segata, L. Waldron, A. Ballarini, V. Narasimhan, O. Jousson, and C. Huttenhower, "Metagenomic microbial community profiling using unique clade-specific marker genes" Nature methods, 2012.
[71]
V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, "Ambit: In-memory accelerator for bulk bitwise operations using commodity DRAM technology" in MICRO, 2017.
[72]
A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar, "ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars" ISCA, 2016.
[73]
A. Stillmaker and B. Baas, "Scaling equations for the accurate prediction of CMOS device performance from 180 nm to 7 nm" Integration, 2017.
[74]
Synopsys,Inc., "Synopsys Design Compiler" https://www.synopsys.com/support/training/rtl-synthesis/design-compiler-rtl-synthesis.html.
[75]
D. T. Truong, E. A. Franzosa, T. L. Tickle, M. Scholz, G. Weingart, E. Pasolli, A. Tett, C. Huttenhower, and N. Segata, "MetaPhlAn2 for enhanced metagenomic taxonomic profiling" Nature methods, 2015.
[76]
Y. Turakhia, G. Bejerano, and W. J. Dally, "Darwin: A genomics co-processor provides up to 15,000x acceleration on long read assembly" ACM SIGPLAN Notices, 2018.
[77]
H. M. Waidyasooriya, M. Hariyama, and M. Kameyama, "FPGA-accelerator for DNA sequence alignment based on an efficient data-dependent memory access scheme" Highly-Efficient Accelerators and Reconfigurable Technologies, 2014.
[78]
K. Wang, J. Alzate, and P. K. Amiri, "Low-power non-volatile spintronic memory: STT-RAM and beyond," Journal of Physics D: Applied Physics, 2013.
[79]
Y. Wang, Y. Han, C. Wang, H. Li, and X. Li, "RADAR: A Case for Retention-Aware DRAM Assembly and Repair in Future FGR DRAM Memory," in DAC, 2015.
[80]
R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges" Advanced materials, 2009.
[81]
D. Weese, M. Holtgrewe, and K. Reinert, "RazerS 3: faster, fully sensitive read mapping," Bioinformatics, 2012.
[82]
Wetterstrand KA., "DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP)," https://www.genome.gov/sequencingcostsdata.
[83]
D. E. Wood, J. Lu, and B. Langmead, "Improved Metagenomic Analysis with Kraken 2," Genome biology, 2019.
[84]
D. E. Wood, J. Lu, and B. Langmead, "Kraken 2 Open-Sourced Implementation." https://github.com/DerrickWood/kraken2, 2019.
[85]
D. E. Wood and S. L. Salzberg, "Kraken: Ultrafast Metagenomic Sequence Classification Using Exact Alignments," Genome biology, 2014.
[86]
J. C. Wooley, A. Godzik, and I. Friedberg, "A primer on metagenomics," PLoS Comput Biol, 2010.
[87]
L. Wu, R. Sharifi, M. Lenjani, K. Skadron, and A. Venkat, "Sieve: Scalable in-situ dram-based accelerator designs for massively parallel k-mer matching," in ISCA, 2021.
[88]
Q. Xia and J. J. Yang, "Memristive crossbar arrays for brain-inspired computing" Nature materials, 2019.
[89]
L. Xie, H. A. Du Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. AlFailakawi, and S. Hamdioui, "Scouting logic: A novel memristor-based logic design for resistive computing," in ISVLSI, 2017.
[90]
H. Xin, D. Lee, F. Hormozdiari, S. Yedkar, O. Mutlu, and C. Alkan, "Accelerating read mapping with FastHASH," in BMC genomics, 2013.
[91]
M. Zahedi, M. Mayahinia, M. A. Lebdeh, S. Wong, and S. Hamdioui, "Efficient organization of digital periphery to support integer datatype for memristor-based cim," in ISVLSI, 2020.
[92]
M. Zahedi, R. van Duijnen, S. Wong, and S. Hamdioui, "Tile Architecture and Hardware Implementation for Computation-in-Memory," in ISVLSI, 2021.
[93]
F. Zokaee, H. R. Zarandi, and L.Jiang, "Aligner: A process-in-memory architecture for short read alignment in rerams," IEEE Computer Architecture Letters, 2018.

Cited By

View all
  • (2024)High-Performance Data Mapping for BNNs on PCM-Based Integrated Photonics2024 Design, Automation & Test in Europe Conference & Exhibition (DATE)10.23919/DATE58400.2024.10546687(1-6)Online publication date: 25-Mar-2024
  • (2024)MegIS: High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00054(660-677)Online publication date: 29-Jun-2024
  • (2023)Lightspeed Binary Neural Networks using Optical Phase-Change Materials2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)10.23919/DATE56975.2023.10137229(1-2)Online publication date: Apr-2023
  • Show More Cited By

Index Terms

  1. KrakenOnMem: a memristor-augmented HW/SW framework for taxonomic profiling

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      ICS '22: Proceedings of the 36th ACM International Conference on Supercomputing
      June 2022
      514 pages
      ISBN:9781450392815
      DOI:10.1145/3524059
      This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 28 June 2022

      Check for updates

      Author Tags

      1. (hash) table lookup
      2. emerging memories
      3. in memory processing
      4. kraken2
      5. taxonomic profiling

      Qualifiers

      • Research-article

      Conference

      ICS '22
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 629 of 2,180 submissions, 29%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)165
      • Downloads (Last 6 weeks)15
      Reflects downloads up to 17 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)High-Performance Data Mapping for BNNs on PCM-Based Integrated Photonics2024 Design, Automation & Test in Europe Conference & Exhibition (DATE)10.23919/DATE58400.2024.10546687(1-6)Online publication date: 25-Mar-2024
      • (2024)MegIS: High-Performance, Energy-Efficient, and Low-Cost Metagenomic Analysis with In-Storage Processing2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)10.1109/ISCA59077.2024.00054(660-677)Online publication date: 29-Jun-2024
      • (2023)Lightspeed Binary Neural Networks using Optical Phase-Change Materials2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)10.23919/DATE56975.2023.10137229(1-2)Online publication date: Apr-2023
      • (2023)ClaPIM: Scalable Sequence Classification Using Processing-in-MemoryIEEE Transactions on Very Large Scale Integration (VLSI) Systems10.1109/TVLSI.2023.329303831:9(1347-1357)Online publication date: 1-Sep-2023
      • (2023)SieveMem: A Computation-in-Memory Architecture for Fast and Accurate Pre-Alignment2023 IEEE 34th International Conference on Application-specific Systems, Architectures and Processors (ASAP)10.1109/ASAP57973.2023.00035(156-164)Online publication date: Jul-2023
      • (2023)Efficient Signed Arithmetic Multiplication on Memristor-Based CrossbarIEEE Access10.1109/ACCESS.2023.326325911(33964-33978)Online publication date: 2023
      • (2023)An Overview of Computation-in-Memory (CIM) ArchitecturesDesign and Applications of Emerging Computer Systems10.1007/978-3-031-42478-6_2(31-65)Online publication date: 17-Aug-2023
      • (2022)System Design for Computation-in-Memory: From Primitive to Complex Functions2022 IFIP/IEEE 30th International Conference on Very Large Scale Integration (VLSI-SoC)10.1109/VLSI-SoC54400.2022.9939571(1-6)Online publication date: 3-Oct-2022

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media