Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A Quantum Algorithm for the Sub-graph Isomorphism Problem

Published: 24 February 2023 Publication History

Abstract

We propose a novel variational method for solving the sub-graph isomorphism problem on a gate-based quantum computer. The method relies (1) on a new representation of the adjacency matrices of the underlying graphs, which requires a number of qubits that scales logarithmically with the number of vertices of the graphs; and (2) on a new ansatz that can efficiently probe the permutation space. Simulations are then presented to showcase the approach on graphs up to 16 vertices, whereas, given the logarithmic scaling, the approach could be applied to realistic sub-graph isomorphism problem instances in the medium term.

References

[1]
Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Córcoles-Gonzales, Abigail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente González, Enrique De La Torre, Delton Ding, Eugene Dumitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek, Joe Hellmers, Łukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko, Ali Javadi-Abhari, Naoki Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Marques, Francisco Jose Martín-Fernández, Douglas T. McClure, David McKay, Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda Rodríguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James O’Riordan, Hanhee Paik, Jesús Pérez, Anna Phan, Marco Pistoia, Viktor Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez Davila, Raymond Harry Putra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Siraichi, Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour, Kenso Trabing, Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot, Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, Christopher Wood, Stephen Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and Christa Zoufal. 2019. Qiskit: An Open-source Framework for Quantum Computing, Zenodo, DOI:https://zenodo.org/record/2562111/export/hx#.Y3tNMi8w1qs
[2]
Yonathan Aflalo, Alexander Bronstein, and Ron Kimmel. 2015. On convex relaxation of graph isomorphism. Proc. Nat. Acad. Sci. 112, 10 (2015), 2942–2947.
[3]
G. E. Andrews. 1994. Number Theory. Dover Publications.
[4]
Vikraman Arvind and Johannes Köbler. 1999. Graph isomorphism is low for ZPP(NP) and other lowness results. Symposium on Theoretical Aspects of Computer Science. DOI:
[5]
Marcel Seelbach Benkner, Vladislav Golyanik, Christian Theobalt, and Michael Moeller. 2020. Adiabatic quantum graph matching with permutation matrix constraints. In International Conference on 3D Vision (3DV). 583–592.
[6]
Marcel Seelbach Benkner, Zorah Lähner, Vladislav Golyanik, Christof Wunderlich, Christian Theobalt, and Michael Moeller. 2021. Q-Match: Iterative shape matching via quantum annealing. In IEEE/CVF International Conference on Computer Vision (ICCV). 7566–7576.
[7]
Béla Bollobás. 1998. Modern Graph Theory (1st ed.). Springer-Verlag New York.
[8]
Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and Alfredo Ferro. 2013. A subgraph isomorphism algorithm and its application to biochemical data. BMC Bioinf. 14, 7 (2013), 1–13.
[9]
Cristian S. Calude, Michael J. Dinneen, and Richard Hua. 2017. QUBO formulations for the graph isomorphism problem and related problems. Theoret. Comput. Sci. 701 (2017), 54–69. DOI:
[10]
Turbasu Chatterjee, Shah Ishmam Mohtashim, and Akash Kundu. 2021. On the variational perspectives to the graph isomorphism problem. arXiv preprint arXiv:2111.09821 (2021).
[11]
D. Conte, P. Foggia, C. Sansone, and M. Vento. 2004. Thirty years of graph matching in pattern recognition. Int. J. Pattern Recog. Artif. Intell. 18, 03 (2004), 265–298.
[12]
Stephen A. Cook. 1971. The complexity of theorem-proving procedures. In 3rd Annual ACM Symposium on Theory of Computing (STOC’71). Association for Computing Machinery, New York, NY, 151–158. DOI:
[13]
L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. 2004. A (sub)graph isomorphism algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26, 10 (2004), 1367–1372.
[14]
Gavin E. Crooks. 2019. Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition. arxiv:1905.13311 [quant-ph].
[15]
David Emms, Richard C. Wilson, and Edwin R. Hancock. 2009. Graph matching using the interference of continuous-time quantum walks. Pattern Recog. 42, 5 (2009), 985–1002.
[16]
David Emms, Richard C. Wilson, and Edwin R. Hancock. 2009. Graph matching using the interference of discrete-time quantum walks. Image Vis. Comput. 27, 7 (2009), 934–949.
[17]
P. Erdös and A. Rényi. 1959. On random graphs I. Publicationes Mathematicae Debrecen 6 (1959), 290.
[18]
Wenfei Fan, Jianzhong Li, Jizhou Luo, Zijing Tan, Xin Wang, and Yinghui Wu. 2011. Incremental graph pattern matching. In ACM SIGMOD International Conference on Management of Data (SIGMOD’11). 925–936.
[19]
Frank Gaitan and Lane Clark. 2014. Graph isomorphism and adiabatic quantum computing. Phys. Rev. A 89, 2 (Feb.2014). DOI:
[20]
M. Gori, M. Maggini, and L. Sarti. 2005. Exact and approximate graph matching using random walks. IEEE Trans. Pattern Anal. Mach. Intell. 27, 7 (2005), 1100–1111.
[21]
Sean Hallgren, Cristopher Moore, Martin Rötteler, Alexander Russell, and Pranab Sen. 2010. Limitations of quantum coset states for graph isomorphism. J. ACM 57, 6 (Nov.2010).
[22]
Sumeet Khatri, Ryan LaRose, Alexander Poremba, Lukasz Cincio, Andrew T. Sornborger, and Patrick J. Coles. 2019. Quantum-assisted quantum compiling. Quantum 3 (2019), 140.
[23]
Raghav Kulkarni and Supartha Podder. 2016. Quantum query complexity of subgraph isomorphism and homomorphism. In 33rd Symposium on Theoretical Aspects of Computer Science (STACS’16). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
[24]
J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. 2013. An in-depth comparison of subgraph isomorphism algorithms in graph databases. Proc. VLDB Endow. 6, 2 (2013).
[25]
Xi Li and Hanwu Chen. 2019. The quantum algorithm for graph isomorphism problem. arXiv preprint arXiv:1901.06530 (2019).
[26]
Youhuan Li, Lei Zou, M. Tamer Özsu, and Dongyan Zhao. 2019. Time constrained continuous subgraph search over streaming graphs. In IEEE 35th International Conference on Data Engineering (ICDE). 1082–1093.
[27]
Zhi-Quan Luo, Wing-Kin Ma, Anthony Man-Cho So, Yinyu Ye, and Shuzhong Zhang. 2010. Semidefinite relaxation of quadratic optimization problems. IEEE Sig. Process. Mag. 27, 3 (2010), 20–34. DOI:
[28]
Liam Madden and Andrea Simonetto. 2022. Best approximate quantum compiling problems. ACM Trans. Quant. Comput. 3, 2 (2022), 1–29.
[29]
C. McCreesh, P. Prosser, C. Solnon, and J. Trimble. 2018. When subgraph isomorphism is really hard, and why this matters for graph databases. J. Artif. Intell. Res. 61 (2018), 723–759.
[30]
Brendan D. McKay and Adolfo Piperno. 2014. Practical graph isomorphism, II. J. Symbol. Computat. 60 (2014), 94–112.
[31]
Cristopher Moore, Alexander Russell, and Piotr Śniady. 2010. On the impossibility of a quantum sieve algorithm for graph isomorphism. SIAM J. Comput. 39, 6 (2010), 2377–2396.
[32]
Chems Eddine Nabti. 2018. Subgraph Isomorphism Search In Massive Graph Data. Ph.D. Dissertation. Universite de Lyon, Lyon, France.
[33]
Marko J. Rancic. 2021. An exponentially more efficient optimization algorithm for noisy quantum computers. arXiv preprint arXiv:2110.10788 (2021).
[34]
S. Roman. 1992. Advanced Linear Algebra. Springer-Verlag. 95220619
[35]
W. Rossmann. 2006. Lie Groups: An Introduction through Linear Groups. Oxford University Press. 2001050008
[36]
Bruce E. Sagan. 2001. The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Springer New York, New York, NY.
[37]
Peter Selinger. 2007. Dagger compact closed categories and completely positive maps: (Extended abstract). Electron. Notes Theoret. Comput. Sci. 170 (2007), 139–163. DOI:
[38]
V. V. Shende, S. S. Bullock, and I. L. Markov. 2006. Synthesis of quantum-logic circuits. IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. 25, 6 (June2006), 1000–1010. DOI:
[39]
Christine Solnon. 2010. AllDifferent-based filtering for subgraph isomorphism. Artif. Intell. 174, 12 (2010), 850–864.
[40]
Shixuan Sun and Qiong Luo. 2020. In-memory subgraph matching: An in-depth study. In ACM SIGMOD International Conference on Management of Data (SIGMOD’20). 1083–1098.
[41]
Ryan Sweke, Frederik Wilde, Johannes Meyer, Maria Schuld, Paul K. Faehrmann, Barthélémy Meynard-Piganeau, and Jens Eisert. 2020. Stochastic gradient descent for hybrid quantum-classical optimization. Quantum 4 (Aug.2020), 314.
[42]
Ed Younis, Koushik Sen, Katherine Yelick, and Costin Iancu. 2021. QFAST: Conflating search and numerical optimization for scalable quantum circuit synthesis. arXiv preprint arXiv:2103.07093 (2021).
[43]
Kenneth M. Zick, Omar Shehab, and Matthew French. 2015. Experimental quantum annealing: Case study involving the graph isomorphism problem. Sci. Rep. 5, 1 (2015), 11168.

Cited By

View all
  • (2024)An Overview of Data Extraction From InvoicesIEEE Access10.1109/ACCESS.2024.336052812(19872-19886)Online publication date: 2024
  • (2024)Solving various NP-hard problems using exponentially fewer qubits on a quantum computerPhysical Review A10.1103/PhysRevA.109.052441109:5Online publication date: 30-May-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Quantum Computing
ACM Transactions on Quantum Computing  Volume 4, Issue 2
June 2023
192 pages
EISSN:2643-6817
DOI:10.1145/3584867
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 February 2023
Online AM: 26 October 2022
Accepted: 12 October 2022
Revised: 02 September 2022
Received: 18 November 2021
Published in TQC Volume 4, Issue 2

Check for updates

Author Tags

  1. Optimization
  2. quantum computing

Qualifiers

  • Research-article

Funding Sources

  • Disruptive Technologies Innovation Fund (DTIF), by Enterprise Ireland
  • IBM Quantum and Mastercard Ireland

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)307
  • Downloads (Last 6 weeks)30
Reflects downloads up to 15 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)An Overview of Data Extraction From InvoicesIEEE Access10.1109/ACCESS.2024.336052812(19872-19886)Online publication date: 2024
  • (2024)Solving various NP-hard problems using exponentially fewer qubits on a quantum computerPhysical Review A10.1103/PhysRevA.109.052441109:5Online publication date: 30-May-2024

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media