Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3575813.3597357acmotherconferencesArticle/Chapter ViewAbstractPublication Pagese-energyConference Proceedingsconference-collections
research-article
Open access

Phase Retrieval via Model-Free Power Flow Jacobian Recovery

Published: 16 June 2023 Publication History

Abstract

Phase retrieval is a prevalent problem in digital signal processing and experimental physics that consists of estimating a complex signal from magnitude measurements. This paper expands the classical phase retrieval framework to electric power systems with unknown network models and limited access to observations of voltage magnitudes, active power injections, and reactive power injections. The proposed method recovers the phase angles and the power-phase angle submatrices of the AC power flow Jacobian matrix. This is made possible by deriving topology and parameter-free expressions for the structural symmetries of the power flow Jacobian that do not depend on the phase angles. These physical laws provide structural constraints for the proposed phase retrieval method. The paper then presents sufficient conditions for guaranteed recovery of the voltage phase angles, which also depend solely on voltage magnitudes, active power injections, and reactive power injections. The method offers two significant benefits: both estimating the voltage phase angles and recovering the power flow Jacobian matrix—a basis for approximating the power flow equations. Simulations on widely studied open-source test networks validate the findings.

References

[1]
[1] Y. Yuan, S. H. Low, O. Ardakanian, and C. J. Tomlin, “Inverse power flow problem,” IEEE Transactions on Control of Network Systems, pp. 1–12, 2022.
[2]
[2] D. Deka, S. Backhaus, and M. Chertkov, “Structure learning in power distribution networks,” IEEE Transactions on Control of Network Systems, vol. 5, no. 3, pp. 1061–1074, 2018.
[3]
[3] Y. C. Chen, J. Wang, A. D. Domínguez-García, and P. W. Sauer, “Measurement-based estimation of the power flow Jacobian matrix,” IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2507–2515, Sep. 2016.
[4]
[4] K. Moffat, “Local power-voltage sensitivity and thevenin impedance estimation from phasor measurements,” in 2021 IEEE Madrid PowerTech, 2021, pp. 1–6.
[5]
[5] R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik, vol. 35, pp. 237–246, 1972.
[6]
[6] J. R. Fienup, “ Phase retrieval algorithms: A comparison,” Applied Optics, vol. 21, no. 15, pp. 2758–2769, Aug. 1982. [Online]. Available: https://opg.optica.org/ao/abstract.cfm?uri=ao-21-15-2758
[7]
[7] A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “ Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Optics Express, vol. 19, no. 11, pp. 10 359–10 376, May 2011. [Online]. Available: https://opg.optica.org/oe/abstract.cfm?uri=oe-19-11-10359
[8]
[8] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase retrieval with application to optical imaging: A contemporary overview,” IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 87–109, May 2015.
[9]
[9] I. Waldspurger, A. d’Aspremont, and S. Mallat, “Phase recovery, MaxCut and complex semidefinite programming,” Math. Program., 2015.
[10]
[10] K. Jaganathan, Y. C. Eldar, and B. Hassibi, “Phase retrieval: An overview of recent developments,” in Optical Compressive Imaging, 1st ed.   CRC Press, 2016, p. 34, arXiv:1510.07713 [cs, math]. [Online]. Available: http://arxiv.org/abs/1510.07713
[11]
[11] S. Bahmani and J. Romberg, “ Phase retrieval meets statistical learning theory: A flexible convex relaxation,” in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics.   PMLR, Apr. 2017, pp. 252–260, iSSN: 2640-3498. [Online]. Available: https://proceedings.mlr.press/v54/bahmani17a.html
[12]
[12] T. Goldstein and C. Studer, “ PhaseMax: Convex phase retrieval via basis pursuit,” IEEE Transactions on Information Theory, vol. 64, no. 4, pp. 2675–2689, Apr. 2018. [Online]. Available: http://ieeexplore.ieee.org/document/8278279/
[13]
[13] J. Dong, L. Valzania, A. Maillard, T.-a. Pham, S. Gigan, and M. Unser, “Phase retrieval: From computational imaging to machine learning: A tutorial,” IEEE Signal Processing Magazine, vol. 40, no. 1, pp. 45–57, 2023.
[14]
[14] V. Terzija, G. Valverde, D. Cai, P. Regulski, V. Madani, J. Fitch, S. Skok, M. M. Begovic, and A. Phadke, “Wide-area monitoring, protection, and control of future electric power networks,” Proceedings of the IEEE, vol. 99, no. 1, pp. 80–93, Jan. 2011.
[15]
[15] Y. Liu, L. Wu, and J. Li, “ D-PMU based applications for emerging active distribution systems: A review,” Electric Power Systems Research, vol. 179, p. 106063, Feb. 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378779619303827
[16]
[16] J. Liu, J. Tang, F. Ponci, A. Monti, C. Muscas, and P. A. Pegoraro, “Trade-offs in PMU deployment for state estimation in active distribution grids,” IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 915–924, Jun. 2012.
[17]
[17] S. Prasad and D. M. V. Kumar, “Trade-offs in PMU and IED deployment for active distribution state estimation using multi-objective evolutionary algorithm,” IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 6, pp. 1298–1307, Jun. 2018.
[18]
[18] M. Zhou, V. Centeno, J. Thorp, and A. Phadke, “An alternative for including phasor measurements in state estimators,” IEEE Transactions on Power Systems, vol. 21, no. 4, pp. 1930–1937, Nov. 2006.
[19]
[19] M. Kezunovic, “Panel session VII: PMU testing and synchrophasor system life-cycle management,” in International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA).   Split, Croatia: IEEE Power and Energy Society and IEEE Instrumentation and Measurement Society, May 2022.
[20]
[20] P. Overholt, D. Ortiz, and A. Silverstein, “Synchrophasor technology and the DOE: Exciting opportunities lie ahead in development and deployment,” IEEE Power and Energy Magazine, vol. 13, no. 5, pp. 14–17, Sep. 2015.
[21]
[21] J. Zhang, Y. Wang, Y. Weng, and N. Zhang, “Topology identification and line parameter estimation for non-PMU distribution network: A numerical method,” IEEE Transactions on Smart Grid, vol. 11, no. 5, pp. 4440–4453, 2020.
[22]
[22] S. Claeys, F. Geth, and G. Deconinck, “Line parameter estimation in multi-phase distribution networks without voltage angle measurements,” in CIRED 2021 - The 26th International Conference and Exhibition on Electricity Distribution, vol. 2021, 2021, pp. 1186–1190.
[23]
[23] J.-W. Chang, G.-S. Lee, and S. Oh, “Bus impedance matrix estimation using non-PMU measurements,” IEEE Transactions on Power Systems, vol. 38, no. 2, pp. 1743–1746, 2023.
[24]
[24] S. Talkington, D. Turizo, S. Grijalva, J. Fernandez, and D. K. Molzahn, “Conditions for estimation of sensitivities of voltage magnitudes to complex power injections,” IEEE Transactions on Power Systems, pp. 1–14, 2023.
[25]
[25] R. Gupta, F. Sossan, and M. Paolone, “ Model-less robust voltage control in active distribution networks using sensitivity coefficients estimated from measurements,” Electric Power Systems Research, vol. 212, p. 108547, Nov. 2022.
[26]
[26] K. Christakou, J. LeBoudec, M. Paolone, and D. Tomozei, “Efficient computation of sensitivity coefficients of node voltages and line currents in unbalanced radial electrical distribution networks,” IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 741–750, Jun. 2013.
[27]
[27] J.-W. Chang, M. Kang, and S. Oh, “Data-driven estimation of voltage-to-power sensitivities considering their mutual dependency in medium voltage distribution networks,” IEEE Transactions on Power Systems, vol. 37, no. 4, pp. 3173–3176, 2022.
[28]
[28] R. Gupta and M. Paolone, “Experimental validation of model-less robust voltage control using measurement-based estimated voltage sensitivity coefficients,” Apr. 2023, arXiv:2304.13638 [eess.SY]. [Online]. Available: https://arxiv.org/abs/2304.13638
[29]
[29] D. K. Molzahn and I. A. Hiskens, “ A survey of relaxations and approximations of the power flow equations,” Foundations and Trends® in Electric Energy Systems, vol. 4, no. 1-2, pp. 1–221, 2019. [Online]. Available: http://www.nowpublishers.com/article/Details/EES-012
[30]
[30] J. J. Grainger and W. D. Stevenson, Power system analysis, 1st ed.   McGraw-Hill, Jan. 1994.
[31]
[31] Y. C. Chen, A. D. Domínguez-García, and P. W. Sauer, “Measurement-based estimation of linear sensitivity distribution factors and applications,” IEEE Transactions on Power Systems, vol. 29, no. 3, pp. 1372–1382, May 2014.
[32]
[32] J. Swartz, E. Ratnam, A. Bhardwaj, and A. von Meier, “Gershgorin disc-based voltage stability regions for DER siting and control in distribution grids,” Dec. 2022, arXiv:2212.06275 [eess.SY]. [Online]. Available: http://arxiv.org/abs/2212.06275
[33]
[33] Z. Liu, J. Liu, W. Bao, and Y. Zhao, “Infinity-norm of impedance-based stability criterion for three-phase AC distributed power systems with constant power loads,” IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3030–3043, 2015.
[34]
[34] A. Gholami and X. A. Sun, “A fast certificate for power system small-signal stability,” in 2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 3383–3388.
[35]
[35] D. G. Feingold and R. Varga, “ Block diagonally dominant matrices and generalizations of the Gerschgorin circle theorem,” Pacific Journal of Mathematics, vol. 12, no. 4, pp. 1241–1250, Dec. 1962. [Online]. Available: http://msp.org/pjm/1962/12-4/p08.xhtml
[36]
[36] C. Echeverría, J. Liesen, and R. Nabben, “ Block diagonal dominance of matrices revisited: Bounds for the norms of inverses and eigenvalue inclusion sets,” Linear Algebra and its Applications, vol. 553, pp. 365–383, Sep. 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0024379518302192
[37]
[37] I. Hiskens and R. Davy, “Exploring the power flow solution space boundary,” IEEE Transactions on Power Systems, vol. 16, no. 3, pp. 389–395, 2001.
[38]
[38] S. Grijalva and P. Sauer, “A necessary condition for power flow Jacobian singularity based on branch complex flows,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 7, pp. 1406–1413, 2005.
[39]
[39] S. Grijalva, “Individual branch and path necessary conditions for saddle-node bifurcation voltage collapse,” IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 12–19, Feb. 2012.
[40]
[40] C. Coffrin, R. Bent, K. Sundar, Y. Ng, and M. Lubin, “PowerModels.jl: An open-source framework for exploring power flow formulations,” in 2018 Power Systems Computation Conference (PSCC), June 2018, pp. 1–8.
[41]
[41] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education,” IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 12–19, 2011.
[42]
[42] C. Barrows, A. Bloom, A. Ehlen, J. Ikaheimo, J. Jorgenson, D. Krishnamurthy, J. Lau, B. McBennett, M. O’Connell, E. Preston, A. Staid, G. Stephen, and J.-P. Watson, “ The IEEE reliability test system: A proposed 2019 update,” IEEE Transactions on Power Systems, vol. 35, no. 1, Jul. 2019, institution: National Renewable Energy Lab. (NREL), Golden, CO (United States) Number: NREL/JA-6A20-71958 Publisher: IEEE. [Online]. Available: https://www.osti.gov/pages/biblio/1545004
[43]
[43] A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Overbye, “Grid structural characteristics as validation criteria for synthetic networks,” IEEE Transactions on Power Systems, vol. 32, no. 4, pp. 3258–3265, Jul. 2017.
[44]
[44] J. Peppanen, M. Hernandez, J. Deboever, M. Rylander, and M. J. Reno, “Distribution load modeling - Survey of the industry state, current practices and future needs,” in 2021 North American Power Symposium (NAPS), Nov. 2021, pp. 1–5.
[45]
[45] H. Xu, A. D. Domínguez-García, V. V. Veeravalli, and P. W. Sauer, “Data-driven voltage regulation in radial power distribution systems,” IEEE Transactions on Power Systems, vol. 35, no. 3, pp. 2133–2143, May 2020.
[46]
[46] S. Nowak, Y. C. Chen, and L. Wang, “Measurement-based optimal DER dispatch with a recursively estimated sensitivity model,” IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4792–4802, Nov. 2020.
[47]
[47] “IEEE Standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces,” IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), pp. 1–138, Apr. 2018.
[48]
[48] G. Strang, Linear algebra and learning from data, 1st ed.   Wellesley-Cambridge Press, 2019.
[49]
[49] M. Bazrafshan and N. Gatsis, “Comprehensive modeling of three-phase distribution systems via the bus admittance matrix,” IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 2015–2029, Mar. 2018.
[50]
[50] D. M. Fobes, S. Claeys, F. Geth, and C. Coffrin, “PowerModelsDistribution.jl: An open-source framework for exploring distribution power flow formulations,” Electric Power Systems Research, vol. 189, p. 106664, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378779620304673

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
e-Energy '23: Proceedings of the 14th ACM International Conference on Future Energy Systems
June 2023
545 pages
ISBN:9798400700323
DOI:10.1145/3575813
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 16 June 2023

Check for updates

Author Tags

  1. electric power systems
  2. inverse problems
  3. phase retrieval

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

Conference

e-Energy '23
Sponsor:

Acceptance Rates

Overall Acceptance Rate 160 of 446 submissions, 36%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 269
    Total Downloads
  • Downloads (Last 12 months)205
  • Downloads (Last 6 weeks)23
Reflects downloads up to 17 Jan 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media