Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3579051.3579070acmotherconferencesArticle/Chapter ViewAbstractPublication PagesijckgConference Proceedingsconference-collections
research-article
Open access

Ontology-based Data Federation

Published: 13 February 2023 Publication History

Abstract

Ontology-based data access (OBDA) is a well-established approach to information management which facilitates the access to a (single) relational data source through the mediation of a high-level ontology, and the use of a declarative mapping linking the data layer to the ontology. We formally introduce here the notion of ontology-based data federation (OBDF) to denote a framework that combines OBDA with a data federation layer where multiple, possibly heterogeneous sources are virtually exposed as a single relational database. We discuss opportunities and challenges of OBDF, and provide techniques to deliver efficient query answering in an OBDF setting. Such techniques are validated through an extensive experimental evaluation based on the Berlin SPARQL Benchmark.

References

[1]
Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison Wesley Publ. Co.
[2]
Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and Edna Ruckhaus. 2011. ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints. In The Semantic Web - ISWC 2011 - 10th International Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I(Lecture Notes in Computer Science, Vol. 7031), Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Fridman Noy, and Eva Blomqvist (Eds.). Springer, 18–34. https://doi.org/10.1007/978-3-642-25073-6_2
[3]
Rana Alotaibi, Bogdan Cautis, Alin Deutsch, Moustafa Latrache, Ioana Manolescu, and Yifei Yang. 2020. ESTOCADA: Towards Scalable Polystore Systems. Proc. VLDB Endow. 13, 12 (2020), 2949–2952. https://doi.org/10.14778/3415478.3415516
[4]
Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider (Eds.). 2007. The Description Logic Handbook: Theory, Implementation and Applications (2nd ed.). Cambridge University Press.
[5]
Christian Bizer and Andreas Schultz. 2009. The Berlin SPARQL Benchmark. Int. J. on Semantic Web and Information Systems 5, 2 (2009), 1–24.
[6]
Carlos Bobed, Fernando Bobillo, Sergio Ilarri, and Eduardo Mena. 2014. Answering Continuous Description Logic Queries: Managing Static and Volatile Knowledge in Ontologies. Int. J. Semant. Web Inf. Syst. 10, 3 (jul 2014), 1–44. https://doi.org/10.4018/IJSWIS.2014070101
[7]
Damian Bursztyn, François Goasdoué, and Ioana Manolescu. 2015. Reformulation-based Query Answering in RDF: Alternatives and Performance. Proc. of the VLDB Endowment 8, 12 (2015), 1888–1891. http://www.vldb.org/pvldb/vol8/p1888-bursztyn.pdf
[8]
Damian Bursztyn, François Goasdoué, and Ioana Manolescu. 2016. Teaching an RDBMS about ontological constraints. Proc. VLDB Endow. 9, 12 (2016), 1161–1172. https://doi.org/10.14778/2994509.2994532
[9]
Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2012. A general Datalog-based framework for tractable query answering over ontologies. J. Web Semant. 14(2012), 57–83. https://doi.org/10.1016/j.websem.2012.03.001
[10]
Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide Lanti, Martin Rezk, Mariano Rodriguez-Muro, and Guohui Xiao. 2017. Ontop: Answering SPARQL Queries over Relational Databases. Semantic Web J. 8, 3 (2017), 471–487. https://doi.org/10.3233/SW-160217
[11]
Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo. 2011. The Mastro System for Ontology-Based Data Access. Semantic Web J. 2, 1 (2011), 43–53.
[12]
Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati. 2007. Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family. J. of Automated Reasoning 39, 3 (2007), 385–429. https://doi.org/10.1007/s10817-007-9078-x
[13]
Alexandros Chortaras, Despoina Trivela, and Giorgos B. Stamou. 2011. Optimized Query Rewriting for OWL 2 QL. In Automated Deduction - CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31 - August 5, 2011. Proceedings(Lecture Notes in Computer Science, Vol. 6803), Nikolaj S. Bjørner and Viorica Sofronie-Stokkermans (Eds.). Springer, 192–206. https://doi.org/10.1007/978-3-642-22438-6_16
[14]
Souripriya Das, Seema Sundara, and Richard Cyganiak. 2012. R2RML: RDB to RDF Mapping Language. W3C Recommendation. World Wide Web Consortium. Available at http://www.w3.org/TR/r2rml/.
[15]
AnHai Doan, Alon Y. Halevy, and Zachary G. Ives. 2012. Principles of Data Integration. Morgan Kaufmann.
[16]
Jennie Duggan, Aaron J. Elmore, Michael Stonebraker, Magdalena Balazinska, Bill Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson, and Stanley B. Zdonik. 2015. The BigDAWG Polystore System. SIGMOD Rec. 44, 2 (2015), 11–16. https://doi.org/10.1145/2814710.2814713
[17]
Kemele M. Endris, Philipp D. Rohde, Maria-Esther Vidal, and Sören Auer. 2019. Ontario: Federated Query Processing Against a Semantic Data Lake. In Database and Expert Systems Applications - 30th International Conference, DEXA 2019, Linz, Austria, August 26-29, 2019, Proceedings, Part I(Lecture Notes in Computer Science, Vol. 11706), Sven Hartmann, Josef Küng, Sharma Chakravarthy, Gabriele Anderst-Kotsis, A Min Tjoa, and Ismail Khalil (Eds.). Springer, 379–395. https://doi.org/10.1007/978-3-030-27615-7_29
[18]
Georg Gottlob, Giorgio Orsi, and Andreas Pieris. 2014. Query Rewriting and Optimization for Ontological Databases. ACM Trans. Database Syst. 39, 3 (2014), 25:1–25:46. https://doi.org/10.1145/2638546
[19]
Zhenzhen Gu, Francesco Corcoglioniti, Davide Lanti, Alessandro Mosca, Guohui Xiao, Jing Xiong, and Diego Calvanese. 2022. A systematic overview of data federation systems. Semantic Web J. (2022). To appear in print. Available at tinyurl.com/48tpyy88.
[20]
Laura M. Haas, Eileen Tien Lin, and Mary A. Roth. 2002. Data Integration through Database Federation. IBM Systems J. 41, 4 (2002), 578–596.
[21]
Alon Y. Halevy. 2001. Answering Queries Using Views: A Survey. Very Large Database J. 10, 4 (2001), 270–294.
[22]
Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 Query Language. W3C Recommendation. World Wide Web Consortium. Available at http://www.w3.org/TR/sparql11-query.
[23]
Yasar Khan, Antoine Zimmermann, Alokkumar Jha, Vijay Gadepally, Mathieu d’Aquin, and Ratnesh Sahay. 2019. One Size Does Not Fit All: Querying Web Polystores. IEEE Access 7(2019), 9598–9617. https://doi.org/10.1109/ACCESS.2018.2888601
[24]
Stanislav Kikot, Roman Kontchakov, and Michael Zakharyaschev. 2012. Conjunctive Query Answering with OWL 2 QL. In Principles of Knowledge Representation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy, June 10-14, 2012, Gerhard Brewka, Thomas Eiter, and Sheila A. McIlraith (Eds.). AAAI Press.
[25]
Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo. 2013. On the Exploration of the Query Rewriting Space with Existential Rules. In Web Reasoning and Rule Systems - 7th International Conference, RR 2013, Mannheim, Germany, July 27-29, 2013. Proceedings(Lecture Notes in Computer Science, Vol. 7994), Wolfgang Faber and Domenico Lembo (Eds.). Springer, 123–137. https://doi.org/10.1007/978-3-642-39666-3_10
[26]
Davide Lanti, Martin Rezk, Guohui Xiao, and Diego Calvanese. 2015. The NPD Benchmark: Reality Check for OBDA Systems. In Proc. of the 18th Int. Conf. on Extending Database Technology (EDBT). OpenProceedings.org, 617–628. https://doi.org/10.5441/002/edbt.2015.62
[27]
Davide Lanti, Guohui Xiao, and Diego Calvanese. 2017. Cost-Driven Ontology-Based Data Access. In Proc. of the 16th Int. Semantic Web Conf. (ISWC)(Lecture Notes in Computer Science, Vol. 10587). Springer, 452–470. https://doi.org/10.1007/978-3-319-68288-4_27
[28]
Davide Lanti, Guohui Xiao, and Diego Calvanese. 2019. VIG: Data Scaling for OBDA Benchmarks. Semantic Web J. 10, 2 (2019), 413–433. https://doi.org/10.3233/SW-180336
[29]
Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören Auer, and Jens Lehmann. 2019. Squerall: Virtual Ontology-Based Access to Heterogeneous and Large Data Sources. In The Semantic Web - ISWC 2019 - 18th International Semantic Web Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings, Part II(Lecture Notes in Computer Science, Vol. 11779), Chiara Ghidini, Olaf Hartig, Maria Maleshkova, Vojtech Svátek, Isabel F. Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon (Eds.). Springer, 229–245. https://doi.org/10.1007/978-3-030-30796-7_15
[30]
Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz. 2012. OWL 2 Web Ontology Language Profiles (Second Edition). W3C Recommendation. World Wide Web Consortium. Available at http://www.w3.org/TR/owl2-profiles/.
[31]
Andriy Nikolov, Peter Haase, Johannes Trame, and Artem Kozlov. 2017. Ephedra: Efficiently Combining RDF Data and Services Using SPARQL Federation. In Knowledge Engineering and Semantic Web - 8th International Conference, KESW 2017, Szczecin, Poland, November 8-10, 2017, Proceedings(Communications in Computer and Information Science, Vol. 786), Przemyslaw Rózewski and Christoph Lange (Eds.). Springer, 246–262. https://doi.org/10.1007/978-3-319-69548-8_17
[32]
Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. 2010. Tractable query answering and rewriting under description logic constraints. J. Appl. Log. 8, 2 (2010), 186–209. https://doi.org/10.1016/j.jal.2009.09.004
[33]
Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. 2008. Linking Data to Ontologies. J. on Data Semantics 10(2008), 133–173. https://doi.org/10.1007/978-3-540-77688-8_5
[34]
Freddy Priyatna, Oscar Corcho, and Juan F. Sequeda. 2014. Formalisation and Experiences of R2RML-based SPARQL to SQL Query Translation Using morph. In Proc. of the 23rd Int. World Wide Web Conf. (WWW). 479–490. https://doi.org/10.1145/2566486.2567981
[35]
Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev. 2013. Ontology-Based Data Access: Ontop of Databases. In Proc. of the 12th Int. Semantic Web Conf. (ISWC)(Lecture Notes in Computer Science, Vol. 8218). Springer, 558–573. https://doi.org/10.1007/978-3-642-41335-3_35
[36]
Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. 2014. HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation. In The Semantic Web: Trends and Challenges - 11th International Conference, ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014. Proceedings(Lecture Notes in Computer Science, Vol. 8465), Valentina Presutti, Claudia d’Amato, Fabien Gandon, Mathieu d’Aquin, Steffen Staab, and Anna Tordai (Eds.). Springer, 176–191. https://doi.org/10.1007/978-3-319-07443-6_13
[37]
Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt. 2011. FedX: Optimization Techniques for Federated Query Processing on Linked Data. In Proc. of the 10th Int. Semantic Web Conf. (ISWC)(Lecture Notes in Computer Science, Vol. 7031). Springer, 601–616.
[38]
Juan F. Sequeda and Daniel P. Miranker. 2013. Ultrawrap: SPARQL Execution on Relational Data. J. of Web Semantics 22(2013), 19–39.
[39]
Amit P. Sheth and James A. Larson. 1990. Federated Database Systems for Managing Distributed, Heterogeneous, and Autonomous Databases. Comput. Surveys 22, 3 (1990), 183–236.
[40]
Ruben Taelman, Joachim Van Herwegen, Miel Vander Sande, and Ruben Verborgh. 2018. Comunica: A Modular SPARQL Query Engine for the Web. In The Semantic Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey, CA, USA, October 8-12, 2018, Proceedings, Part II(Lecture Notes in Computer Science, Vol. 11137), Denny Vrandecic, Kalina Bontcheva, Mari Carmen Suárez-Figueroa, Valentina Presutti, Irene Celino, Marta Sabou, Lucie-Aimée Kaffee, and Elena Simperl (Eds.). Springer, 239–255. https://doi.org/10.1007/978-3-030-00668-6_15
[41]
Michaël Thomazo. 2013. Compact Rewritings for Existential Rules. In IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013, Francesca Rossi (Ed.). IJCAI/AAAI, 1125–1131. http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6826
[42]
Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo, Antonella Poggi, Riccardo Rosati, and Michael Zakharyaschev. 2018. Ontology-Based Data Access: A Survey. In Proc. of the 27th Int. Joint Conf. on Artificial Intelligence (IJCAI). IJCAI Org., 5511–5519. https://doi.org/10.24963/ijcai.2018/777
[43]
Guohui Xiao, Linfang Ding, Benjamin Cogrel, and Diego Calvanese. 2019. Virtual Knowledge Graphs: An Overview of Systems and Use Cases. Data Intelligence 1, 3 (2019), 201–223. https://doi.org/10.1162/dint_a_00011
[44]
Guohui Xiao, Roman Kontchakov, Benjamin Cogrel, Diego Calvanese, and Elena Botoeva. 2018. Efficient Handling of SPARQL Optional for OBDA. In Proc. of the 17th Int. Semantic Web Conf. (ISWC)(Lecture Notes in Computer Science). Springer, 354–373.
[45]
Guohui Xiao, Davide Lanti, Roman Kontchakov, Sarah Komla-Ebri, Elem Güzel-Kalayci, Linfang Ding, Julien Corman, Benjamin Cogrel, Diego Calvanese, and Elena Botoeva. 2020. The Virtual Knowledge Graph System Ontop. In Proc. of the 19th Int. Semantic Web Conf. (ISWC)(Lecture Notes in Computer Science, Vol. 12507). Springer, 259–277. https://doi.org/10.1007/978-3-030-62466-8_17

Cited By

View all
  • (2024)Federated Learning: Breaking Down Barriers in Global Genomic ResearchGenes10.3390/genes1512165015:12(1650)Online publication date: 22-Dec-2024
  • (2024)A systematic overview of data federation systemsSemantic Web10.3233/SW-22320115:1(107-165)Online publication date: 12-Jan-2024
  • (2024)OBDF: OBDA + Data Federation – Extended Abstract2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW)10.1109/ICDEW61823.2024.00060(381-383)Online publication date: 13-May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
IJCKG '22: Proceedings of the 11th International Joint Conference on Knowledge Graphs
October 2022
134 pages
ISBN:9781450399876
DOI:10.1145/3579051
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 February 2023

Check for updates

Author Tags

  1. Data federation
  2. OBDA
  3. Query optimization

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • Italian PRIN
  • EU H2020
  • Fusion Grant
  • Norwegian Research Council
  • Free University of Bozen-Bolzano

Conference

IJCKG 2022

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)473
  • Downloads (Last 6 weeks)51
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Federated Learning: Breaking Down Barriers in Global Genomic ResearchGenes10.3390/genes1512165015:12(1650)Online publication date: 22-Dec-2024
  • (2024)A systematic overview of data federation systemsSemantic Web10.3233/SW-22320115:1(107-165)Online publication date: 12-Jan-2024
  • (2024)OBDF: OBDA + Data Federation – Extended Abstract2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW)10.1109/ICDEW61823.2024.00060(381-383)Online publication date: 13-May-2024
  • (2024)Semantics-Enabled Data Federation: Bringing Materials Scientists Closer to FAIR DataIntegrating Materials and Manufacturing Innovation10.1007/s40192-024-00348-413:2(420-434)Online publication date: 9-Apr-2024

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media