Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3587819.3590990acmconferencesArticle/Chapter ViewAbstractPublication PagesmmsysConference Proceedingsconference-collections
research-article

Cross-layer Network Bandwidth Estimation for Low-latency Live ABR Streaming

Published: 08 June 2023 Publication History

Abstract

Low-latency live (LLL) adaptive bitrate (ABR) streaming relies critically on accurate bandwidth estimation to react to dynamic network conditions. While existing studies have proposed bandwidth estimation techniques for LLL streaming, these approaches are at the application level, and their accuracy is limited by the distorted timing information observed at the application level. In this paper, we propose a novel cross-layer approach that uses coarse-grained application-level semantics and fine-grained kernel-level packet capture to obtain accurate bandwidth estimation. We incorporate this technique in three popular open-source ABR players and show that it provides significantly more accurate bandwidth estimation than the state-of-the-art application-level approaches. In addition, the more accurate bandwidth estimation leads to better bandwidth prediction, which we show can lead to significantly better quality of experience (QoE) for end users.

References

[1]
Big buck bunny. https://peach.blender.org/download/.
[2]
DASH Industry Forum. https://dashif.org/.
[3]
Fetch API. https://tinyurl.com/5ksttkas.
[4]
Grand Challenge on Adaptation Algorithms for Near-Second Latency. https://2020.acmmmsys.org/lll_challenge.php.
[5]
pyshark. https://github.com/KimiNewt/pyshark.
[6]
Scapy. https://github.com/secdev/scapy.
[7]
The WebSocket protocol. https://datatracker.ietf.org/doc/html/rfc6455.
[8]
Information technology-Multimedia application format (MPEG-A)-Part19: Common media application format (CMAF) for segmented media. Standard ISO/IEC 23000-19:2018, International Organization for Standardization and International Electrotechnical Commission. https://www.iso.org/standard/71975.html, 2018.
[9]
Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett, B. Ribeiro, J. Zhan, and H. Zhang. Oboe: Auto-tuning video abr algorithms to network conditions. In SIGCOMM, 2018.
[10]
A. Bentaleb, M. N. Akcay, M. Lim, A. C. Begen, and R. Zimmermann. Catching the Moment with LoL+ in Twitch-Like Low-Latency Live Streaming Platforms. IEEE Transactions on Multimedia, 2021.
[11]
A. Bentaleb, A. C. Begen, S. Harous, and R. Zimmermann. Data-driven bandwidth prediction models and automated model selection for low latency. IEEE Transactions on Multimedia, 23, 2020.
[12]
A. Bentaleb, C. Timmerer, A. C. Begen, and R. Zimmermann. Bandwidth prediction in low-latency chunked streaming. In Proc. of ACM NOSSDAV, 2019.
[13]
A. Bentaleb, C. Timmerer, A. C. Begen, and R. Zimmermann. Performance analysis of ACTE: a bandwidth prediction method for low latency chunked streaming. ACM TOMM, 2020.
[14]
Y. Cho, C.-C. J. Kuo, R. Huang, and C. Lima. Cross-layer design for wireless video streaming. In Proc. of IEEE GLOBECOM, 2010.
[15]
G. W. Connery, W. P. Sherer, G. Jaszewski, and J. S. Binder. Offload of TCP segmentation to a smart adapter, August 1999. US Patent 5,937,169.
[16]
J. Corbet. JLS2009: Generic receive offload. https://lwn.net/Articles/358910/,2009.
[17]
DASH Industry Forum. dash.js. https://goo.gl/XJcciV.
[18]
C. Dovrolis, P. Ramanathan, and D. Moore. Packet-dispersion techniques and a capacity-estimation methodology. IEEE/ACM Transactions on Networking, 12(6), 2004.
[19]
T. Dreibholz. NEAT Sockets API. https://datatracker.ietf.org/doc/draft-dreibholz-taps-neat-socketapi/.
[20]
T. Enghardt, T. Zinner, and A. Feldmann. Using informed access network selection to improve HTTP adaptive streaming performance. In ACM MMSys, 2020.
[21]
ExoPlayer. Sliding percentile. https://goo.gl/FFtVr8, 2016.
[22]
FFmpeg. FFmpeg Project. https://www.ffmpeg.org/, 2017.
[23]
R. Fielding and J. Reschke. Hypertext Transfer Protocol - HTTP/1.1, RFC 7230. https://datatracker.ietf.org/doc/html/rfc7230, 2014.
[24]
S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby, and K. Winstein. Salsify: Low-latency network video through tighter integration between a video codec and a transport protocol. In Proc. of Networked Systems Design & Implementation (NSDI), 2018.
[25]
A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica, J. Jiang, V. Sekar, and H. Zhang. C3: Internet-Scale Control Plane for Video Quality Optimization. In Proc. USENIX NSDI, 2015.
[26]
Google. ExoPlayer: Adaptive video streaming on Android - YouTube. https://tinyurl.com/58j8n3yb, 2014.
[27]
Google. ExoPlayer. https://github.com/google/ExoPlayer, 2016.
[28]
Google. Shaka Player. https://github.com/google/shaka-player, 2019.
[29]
C. Gutterman, B. Fridman, T. Gilliland, Y. Hu, and G. Zussman. STALLION: video adaptation algorithm for low-latency video streaming. In Proc. of ACM MMSys, 2020.
[30]
T. Hoßfeld, C. S. Michael Seufert, T. Zinner, and P. Tran-Gia. Identifying QoE optimal adaptation of HTTP adaptive streaming based on subjective studies. Computer Networks, 81, April 2015.
[31]
T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari. Confused, timid, and unstable: picking a video streaming rate is hard. In ACM IMC, 2012.
[32]
T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A buffer-based approach to rate adaptation: Evidence from a large video streaming service. In Proc. of ACM SIGCOMM, 2014.
[33]
International Organization for Standardization. ISO/IEC DIS 23009-1.2 Dynamic adaptive streaming over HTTP (DASH), 2012.
[34]
J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and H. Zhang. CFA: A Practical Prediction System for Video QoE Optimization. In Proc. USENIX NSDI, 2016.
[35]
J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with FESTIVE. In CoNEXT, 2012.
[36]
T. Karagkioules, R. Mekuria, D. Griffioen, and A. Wagenaar. Online learning for low-latency adaptive streaming. In Proc. of ACM MMSys, 2020.
[37]
J.-L. Kuo, C.-H. Shih, C.-Y. Ho, and Y.-C. Chen. A cross-layer approach for realtime multimedia streaming on wireless peer-to-peer ad hoc network. Elsevier Ad Hoc Networks, 11(1), 2013.
[38]
Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, and M. Manohara. Toward A Practical Perceptual Video Quality Metric. https://goo.gl/ptjrWv., 2016.
[39]
Z. Li, A. Begen, J. Gahm, Y. Shan, B. Osler, and D. Oran. Streaming video over HTTP with consistent quality. In ACM MMSys, 2014.
[40]
M. Lim, M. N. Akcay, A. Bentaleb, A. C. Begen, and R. Zimmermann. When they go high, we go low: Low-latency live streaming in dash.js with LoL. In Proc. of ACM MMSys, 2020.
[41]
Linux. tc. https://linux.die.net/man/8/tc, 2014.
[42]
G. Lv, Q. Wu, W. Wang, Z. Li, and G. Xie. Lumos: towards Better Video Streaming QoE through Accurate Throughput Prediction. In IEEE INFOCOM, 2022.
[43]
T. Lyko, M. Broadbent, N. Race, M. Nilsson, P. Farrow, and S. Appleby. Evaluation of CMAF in live streaming scenarios. In Proc. of ACM NOSSDAV, 2019.
[44]
H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming with Pensieve. In Proc. of ACM SIGCOMM, 2017.
[45]
K. Miller, A.-K. Al-Tamimi, and A. Wolisz. QoE-based low-delay live streaming using throughput predictions. ACM TOMM, 13(1), 2016.
[46]
Y. S. Nam, J. Gao, C. Bothra, E. Ghabashneh, S. Rao, B. Ribeiro, J. Zhan, and H. Zhang. Xatu: Richer neural network based prediction for video streaming. In Proc. of ACM SIGMETRICS, 2022.
[47]
I. M. Ozcelik and C. Ersoy. Low-Latency Live Streaming Over HTTP in Bandwidth-Limited Networks. IEEE Communication Letters, 25(2), 2021.
[48]
H. B. Pasandi, T. Nadeem, H. Amirpour, and C. Timmerer. A cross-layer approach for supporting real-time multi-user video streaming over WLANs. In Proc. of ACM MobiCom, 2021.
[49]
H. Peng, Y. Zhang, Y. Yang, and J. Yan. A hybrid control scheme for adaptive live streaming. In ACM Multimedia, 2019.
[50]
R. Prasad, C. Dovrolis, M. Murray, and K. Claffy. Bandwidth estimation: metrics, measurement techniques, and tools. IEEE Network, 17(6), 2003.
[51]
Y. Qin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B. Wang, and C. Yue. ABR streaming of VBR-encoded videos: characterization, challenges, and solutions. In CoNext. ACM, 2018.
[52]
Y. Qin, R. Jin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B. Wang, and C. Yue. A control theoretic approach to ABR video streaming: A fresh look at PID-based rate adaptation. In INFOCOM, 2017.
[53]
P. S. Schmidt, T. Enghardt, R. Khalili, and A. Feldmann. Socket Intents: leveraging application awareness for multi-access connectivity. In Proc. of ACM CoNext, 2013.
[54]
E. Setton, T. Yoo, X. Zhu, A. Goldsmith, and B. Girod. Cross-layer design of ad hoc networks for real-time video streaming. IEEE Wireless Communications, 12(4), 2005.
[55]
SimilarTech Ltd. Facebook Video vs Shaka Player. urlhttps://www.similartech.com/compare/facebook-video-vs-shaka-player, 2019.
[56]
K. Spiteri, R. Sitaraman, and D. Sparacio. From theory to practice: Improving bitrate adaptation in the dash reference player. In MMSys, 2018.
[57]
K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. BOLA: near-optimal bitrate adaptation for online videos. In INFOCOM. IEEE, 2016.
[58]
L. Sun, T. Zong, S. Wang, Y. Liu, and Y. Wang. Tightrope walking in low-latency live streaming: Optimal joint adaptation of video rate and playback speed. In Proc. of ACM MMSys, 2021.
[59]
Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and B. Sinopoli. CS2P: Improving Video Bitrate Selection and Adaptation with Data-Driven Throughput Prediction. In Proc. of ACM SIGCOMM, 2016.
[60]
F. Tashtarian, A. Bentaleb, A. Erfanian, H. Hellwagner, C. Timmerer, and R. Zimmermann. HxL3: Optimized Delivery Architecture for HTTP Low-Latency Live Streaming. IEEE Transactions on Multimedia, 2022.
[61]
F. Weinrank, K. Grinnemo, Z. Bozakov, A. Brunström, T. Dreibholz, P. Hurtig, N. Khademi, and M. Tüxen. A NEAT Way to Browse the Web. In Proc. of the ACM, IRTF and ISOC Applied Networking Research Workshop (ANRW), July 2017.
[62]
P. K. Yadav, A. Bentaleb, M. Lim, J. Huang, W. T. Ooi, and R. Zimmermann. Playing chunk-transferred DASH segments at low latency with QLive. In Proc. of ACM MMSys, 2021.
[63]
F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis, and K. Winstein. Learning in situ: a randomized experiment in video streaming. In Proc. USENIX NSDI, 2020.
[64]
G. Yi, D. Yang, A. Bentaleb, W. Li, Y. Li, K. Zheng, J. Liu, W. T. Ooi, and Y. Cui. The ACM Multimedia 2019 Live Video Streaming Grand Challenge. In ACM Multimedia, 2019.
[65]
X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-theoretic approach for dynamic adaptive video streaming over HTTP. In SIGCOMM. ACM, 2015.
[66]
X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, X. Jin, J. Rexford, and R. K. Sinha. Can accurate predictions improve video streaming in cellular networks? In HotMobile, 2015.

Cited By

View all
  • (2024) BML 3 : Accurate Bandwidth Measurement for QoE Optimization in Low Latency Live Streaming 2024 20th International Conference on the Design of Reliable Communication Networks (DRCN)10.1109/DRCN60692.2024.10539140(39-46)Online publication date: 6-May-2024
  • (2023)Adaptive Streaming Transmission Optimization Method Based on Three-Dimensional Caching Architecture and Environment Awareness in High-Speed RailElectronics10.3390/electronics1301004113:1(41)Online publication date: 20-Dec-2023
  • (undefined)IoT Video Delivery Optimization Through Machine Learning-Based Frame Resolution AdjustmentACM Transactions on Multimedia Computing, Communications, and Applications10.1145/3665929

Index Terms

  1. Cross-layer Network Bandwidth Estimation for Low-latency Live ABR Streaming

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    MMSys '23: Proceedings of the 14th ACM Multimedia Systems Conference
    June 2023
    495 pages
    ISBN:9798400701481
    DOI:10.1145/3587819
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 June 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. ABR streaming
    2. low-latency live streaming
    3. bandwidth estimation

    Qualifiers

    • Research-article

    Conference

    MMSys '23
    Sponsor:
    MMSys '23: 14th Conference on ACM Multimedia Systems
    June 7 - 10, 2023
    BC, Vancouver, Canada

    Acceptance Rates

    Overall Acceptance Rate 176 of 530 submissions, 33%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)172
    • Downloads (Last 6 weeks)5
    Reflects downloads up to 18 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024) BML 3 : Accurate Bandwidth Measurement for QoE Optimization in Low Latency Live Streaming 2024 20th International Conference on the Design of Reliable Communication Networks (DRCN)10.1109/DRCN60692.2024.10539140(39-46)Online publication date: 6-May-2024
    • (2023)Adaptive Streaming Transmission Optimization Method Based on Three-Dimensional Caching Architecture and Environment Awareness in High-Speed RailElectronics10.3390/electronics1301004113:1(41)Online publication date: 20-Dec-2023
    • (undefined)IoT Video Delivery Optimization Through Machine Learning-Based Frame Resolution AdjustmentACM Transactions on Multimedia Computing, Communications, and Applications10.1145/3665929

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media