Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3588028.3603657acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
poster

Guided Training of NeRFs for Medical Volume Rendering

Published: 23 July 2023 Publication History

Abstract

Neural Radiance Fields (NeRF) trained on pre-rendered photorealistic images represent complex medical data in a fraction of the size, while interactive applications synthesize novel views directly from the neural networks. We demonstrate a practical implementation of NeRFs for high resolution CT volume data, using differentiable rendering for training view selection.

Supplemental Material

PDF File
Poster

References

[1]
Thomas Kroes, Frits H. Post, and Charl P. Botha. 2012. Exposure Render: An Interactive Photo-Realistic Volume Rendering Framework. PLOS ONE 7, 7 (2012), 1–10. https://doi.org/10.1371/journal.pone.0038586
[2]
Matthew M. Loper and Michael J. Black. 2014. OpenDR: An Approximate Differentiable Renderer. In Proceedings of ECCV. 154–169.
[3]
Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Transactions on Graphics 41, 4, Article 102 (2022), 15 pages. https://doi.org/10.1145/3528223.3530127
[4]
Paul Tafforeau, Claire Walsh, Willi L. Wagner, Daniyal J. Jafree, Alexandre Bellier, Christopher Werlein, Mark P. Kühnel, Elodie Boller, Simon Walker-Samuel, Jan Lukas Robertus, David A. Long, Joseph Jacob, Sebastian Marussi, Eeline Brown, Natalie Holroyd, Danny D. Jonigk, Maximilian Ackermann, and Peter D. Lee. 2021. Complete brain from the body donor LADAF-2020-31 (Version 1) [Data set]. European Synchrotron Radiation Facility (2021). https://doi.org/doi.org/10.15151/ESRF-DC-572252655
[5]
Sebastian Weiss and Rüdiger Westermann. 2022. Differentiable Direct Volume Rendering. IEEE Transactions on Visualization and Computer Graphics 28, 1 (2022), 562–572. https://doi.org/10.1109/TVCG.2021.3114769
[6]
Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico Tombari, James Tompkin, Vincent sitzmann, and Srinath Sridhar. 2022. Neural Fields in Visual Computing and Beyond. Computer Graphics Forum 41, 2 (2022), 641–676. https://doi.org/10.1111/cgf.14505

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH '23: ACM SIGGRAPH 2023 Posters
July 2023
111 pages
ISBN:9798400701528
DOI:10.1145/3588028
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 July 2023

Check for updates

Author Tags

  1. differentiable rendering
  2. neural radiance fields
  3. volume path tracing

Qualifiers

  • Poster
  • Research
  • Refereed limited

Conference

SIGGRAPH '23
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 229
    Total Downloads
  • Downloads (Last 12 months)77
  • Downloads (Last 6 weeks)9
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media