Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3589132.3625587acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article
Open access

Summarizing Trajectories Using Semantically Enriched Geographical Context

Published: 22 December 2023 Publication History

Abstract

The proliferation of tracking sensors in today's devices has led to the generation of high-frequency, high-volume streams of mobility data capturing the movements of various objects. These movement data can be enriched with semantic contextual information, such as activities, events, user preferences, and more, generating semantically enriched trajectories. Creating and managing these types of trajectories presents challenges due to the massive data volume and the heterogeneous, complex semantic dimensions. To address these issues, we introduce a novel approach, MAT-Sum, which uses a location-centric enrichment perspective to summarize massive volumes of mobility data while preserving essential semantic information. Our approach enriches geographical areas with semantic aspects to provide the underlying context for trajectories, enabling effective data reduction through trajectory summarization. In the experimental evaluation, we show that MAT-Sum effectively minimizes trajectory volume while retaining a good level of semantic quality, thus presenting a viable solution to the relevant issue of managing massive mobility data.

References

[1]
D. Amigo, D. S. Pedroche, J. García, and J. M. Molina. Review and classification of trajectory summarisation algorithms: From compression to segmentation. Int. J. of Distributed Sensor Networks, 17(10):15501477211050729, 2021.
[2]
V. Bogorny, C. Renso, A. R. de Aquino, F. de Lucca Siqueira, and L. O. Alvares. CONSTAnT - A conceptual data model for semantic trajectories of moving objects. Trans. GIS, 18(1):66--88, 2014.
[3]
V. Chandola and V. Kumar. Summarization - compressing data into an informative representation. Knowl. Inf. Syst., 12(3):355--378, 2007.
[4]
Y. Chen, K. Jiang, Y. Zheng, C. Li, and N. Yu. Trajectory simplification method for location-based social networking services. In Proceedings of the 2009 international workshop on location based social networks, pages 33--40, 2009.
[5]
M. L. Damiani and F. Hachem. Segmentation techniques for the summarization of individual mobility data. WIREs Data Mining Knowl. Discov., 7(6), 2017.
[6]
M. L. Damiani, F. Hachem, C. Quadri, M. Rossini, and S. Gaito. On location relevance and diversity in human mobility data. ACM Transactions on Spatial Algorithms and Systems (TSAS), 7(2):1--38, 2020.
[7]
R. Fileto, C. May, C. Renso, N. Pelekis, D. Klein, and Y. Theodoridis. The baquara2 knowledge-based framework for semantic enrichment and analysis of movement data. Data Knowl. Eng., 98:104--122, 2015.
[8]
C. Fu, H. Huang, and R. Weibel. Adaptive simplification of GPS trajectories with geographic context - a quadtree-based approach. Int. J. Geogr. Inf. Sci., 35(4):661--688, 2021.
[9]
R. H. Güting, F. Valdés, and M. L. Damiani. Symbolic trajectories. ACM Trans. Spatial Algorithms Syst., 1(2), jul 2015.
[10]
T. Hagen, J. Hamann, and S. Saki. Discretization of Urban Areas Using POI-based Tesselation. Working papers. Frankfurt University of Applied Sciences, Fachbereich 3: Wirtschaft und Recht, 2022.
[11]
Z. R. Hesabi, Z. Tari, A. M. Goscinski, A. Fahad, I. Khalil, and C. Queiroz. Data summarization techniques for big data - A survey. In S. U. Khan and A. Y. Zomaya, editors, Handbook on Data Centers, pages 1109--1152. Springer, 2015.
[12]
F. Lettich, C. Pugliese, C. Renso, and F. Pinelli. General methodology for building multiple aspect trajectories. In The 38th ACM/SIGAPP Symposium On Applied Computing, ACM SAC 2023, Tallin, Estonia, March 27--31, 2023, Proceedings, 2023.
[13]
M. Liu, G. He, and Y. Long. A semantics-based trajectory segmentation simplification method. J. of Geo. and Spatial Analysis, 5:1--15, 2021.
[14]
M. Luca, G. Barlacchi, B. Lepri, and L. Pappalardo. A survey on deep learning for human mobility. ACM Comput. Surv., 55(1), nov 2021.
[15]
V. L. Machado, R. dos Santos Mello, and V. Bogorny. A method for summarizing trajectories with multiple aspects. In DEXA 2022, Vienna, Austria, August 22--24, volume 13426 of Lecture Notes in Computer Science, pages 433--446. Springer, 2022.
[16]
R. d. S. Mello, V. Bogorny, L. O. Alvares, L. H. Z. Santana, C. A. Ferrero, A. A. Frozza, G. A. Schreiner, and C. Renso. MASTER: A multiple aspect view on trajectories. Transactions in GIS, 23(4):805--822, 2019.
[17]
T. P. Nogueira, R. B. Braga, C. T. de Oliveira, and H. Martin. Framestep: A framework for annotating semantic trajectories based on episodes. Expert Systems with Applications, 92:533--545, 2018.
[18]
A. Okabe, B. Boots, K. Sugihara, and S. Chiu. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, volume 43. John Wiley & Sons, 05 2000.
[19]
L. M. Petry, C. A. Ferrero, L. O. Alvares, C. Renso, and V. Bogorny. Towards semantic-aware multiple-aspect trajectory similarity measuring. Transactions in GIS, 23(5):960--975, 2019.
[20]
C. Pugliese, F. Lettich, C. Renso, and F. Pinelli. MAT-builder: a system to build semantically enriched trajectories. In MDM 2022, pages 274--277, 2022.
[21]
L. Ruback, M. A. Casanova, A. Raffaetà, C. Renso, and V. M. P. Vidal. Enriching mobility data with linked open data. In IDEAS 2016, pages 173--182. ACM, 2016.
[22]
K. Sahr. Central place indexing: Optimal location representation for digital earth using hierarchically indexed mixed-aperture hexagonal discrete global grids. In AutoCarto 2014, the 20th International Research Symposium on Computer-based Cartography, Pittsburgh, Pennsylvania, USA, October 5--7, 2014., 2014.
[23]
S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto, and C. Vangenot. A conceptual view on trajectories. DKE, 65(1):126--146, 2008.
[24]
R. Tamilmani and E. Stefanakis. Modelling and analysis of semantically enriched simplified trajectories using graph databases. Advances in Cartography and GIScience of the ICA, 1:20, 2019.
[25]
D. Teixeira, J. Almeida, and A. Viana. On estimating the predictability of human mobility: the role of routine. EPJ Data Science, 10, 12 2021.
[26]
S. Wang, Z. Bao, J. S. Culpepper, and G. Cong. A survey on trajectory data management, analytics, and learning. ACM Comput. Surv., 54(2), mar 2021.
[27]
D. Yang, D. Zhang, V. W. Zheng, and Z. Yu. Modeling user activity preference by leveraging user spatial temporal characteristics in lbsns. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(1):129--142, 2015.
[28]
Y. Zheng, X. Xie, and W.-Y. Ma. Geolife: A collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull., 33:32--39, 2010.

Cited By

View all
  • (2024)Towards robust trajectory representationsProceedings of the Thirty-Third International Joint Conference on Artificial Intelligence10.24963/ijcai.2024/248(2243-2251)Online publication date: 3-Aug-2024
  • (2024)From Geolocated Images to Urban Region Identification and Description: a Large Language Model ApproachProceedings of the 32nd ACM International Conference on Advances in Geographic Information Systems10.1145/3678717.3691317(557-560)Online publication date: 29-Oct-2024
  • (2024)Bond-Aware Moving Clusters of Atomic Trajectories with Relaxed PersistencyProceedings of the 32nd ACM International Conference on Advances in Geographic Information Systems10.1145/3678717.3691298(605-608)Online publication date: 29-Oct-2024
  • Show More Cited By

Index Terms

  1. Summarizing Trajectories Using Semantically Enriched Geographical Context

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      SIGSPATIAL '23: Proceedings of the 31st ACM International Conference on Advances in Geographic Information Systems
      November 2023
      686 pages
      ISBN:9798400701689
      DOI:10.1145/3589132
      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 22 December 2023

      Check for updates

      Author Tags

      1. semantic trajectory
      2. multiple aspect trajectory
      3. summarized semantic trajectory
      4. semantic enrichment

      Qualifiers

      • Research-article

      Funding Sources

      Conference

      SIGSPATIAL '23
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 257 of 1,238 submissions, 21%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)340
      • Downloads (Last 6 weeks)26
      Reflects downloads up to 03 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Towards robust trajectory representationsProceedings of the Thirty-Third International Joint Conference on Artificial Intelligence10.24963/ijcai.2024/248(2243-2251)Online publication date: 3-Aug-2024
      • (2024)From Geolocated Images to Urban Region Identification and Description: a Large Language Model ApproachProceedings of the 32nd ACM International Conference on Advances in Geographic Information Systems10.1145/3678717.3691317(557-560)Online publication date: 29-Oct-2024
      • (2024)Bond-Aware Moving Clusters of Atomic Trajectories with Relaxed PersistencyProceedings of the 32nd ACM International Conference on Advances in Geographic Information Systems10.1145/3678717.3691298(605-608)Online publication date: 29-Oct-2024
      • (2024)Unveiling Urban and Human Mobility Dynamics through Semantic Trajectory Summarization2024 25th IEEE International Conference on Mobile Data Management (MDM)10.1109/MDM61037.2024.00054(259-261)Online publication date: 24-Jun-2024
      • (2024)Understanding Human Mobility Dynamics: Insights from Summarized Semantic Trajectories2024 25th IEEE International Conference on Mobile Data Management (MDM)10.1109/MDM61037.2024.00039(159-164)Online publication date: 24-Jun-2024

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media