Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

RadarSense: Accurate Recognition of Mid-air Hand Gestures with Radar Sensing and Few Training Examples

Published: 11 September 2023 Publication History

Abstract

Microwave radars bring many benefits to mid-air gesture sensing due to their large field of view and independence from environmental conditions, such as ambient light and occlusion. However, radar signals are highly dimensional and usually require complex deep learning approaches. To understand this landscape, we report results from a systematic literature review of (N=118) scientific papers on radar sensing, unveiling a large variety of radar technology of different operating frequencies and bandwidths and antenna configurations but also various gesture recognition techniques. Although highly accurate, these techniques require a large amount of training data that depend on the type of radar. Therefore, the training results cannot be easily transferred to other radars. To address this aspect, we introduce a new gesture recognition pipeline that implements advanced full-wave electromagnetic modeling and inversion to retrieve physical characteristics of gestures that are radar independent, i.e., independent of the source, antennas, and radar-hand interactions. Inversion of radar signals further reduces the size of the dataset by several orders of magnitude, while preserving the essential information. This approach is compatible with conventional gesture recognizers, such as those based on template matching, which only need a few training examples to deliver high recognition accuracy rates. To evaluate our gesture recognition pipeline, we conducted user-dependent and user-independent evaluations on a dataset of 16 gesture types collected with the Walabot, a low-cost off-the-shelf array radar. We contrast these results with those obtained for the same gesture types collected with an ultra-wideband radar made of a vector network analyzer with a single horn antenna and with a computer vision sensor, respectively. Based on our findings, we suggest some design implications to support future development in radar-based gesture recognition.

References

[1]
Gianluca Agresti and Simone Milani. 2019. Material identification using RF sensors and convolutional neural networks. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’19). IEEE, Los Alamitos, CA, 3662–3666.
[2]
Misbah Ahmad, Milind Ghawale, Sakshi Dubey, Ayushi Gupta, and Poonam Sonar. 2021. GigaHertz: Gesture sensing using microwave radar and IR sensor with machine learning algorithms. In Image Processing and Capsule Networks, Joy Iong-Zong Chen, João Manuel R. S. Tavares, Subarna Shakya, and Abdullah M. Iliyasu (Eds.). Advances in Intelligent Systems and Computing, Vol. 1200. Springer International Publishing, Cham, 422–434.
[3]
Shahzad Ahmed and Sung Ho Cho. 2020. Hand gesture recognition using an IR-UWB radar with an inception module-based classifier. Sensors 20, 2 (2020), 1–18.
[4]
Shahzad Ahmed, Faheem Khan, Asim Ghaffar, Farhan Hussain, and Sung Ho Cho. 2019. Finger-counting-based gesture recognition within cars using impulse radar with convolutional neural network. Sensors 19, 6 (2019), 1–14.
[5]
Shahzad Ahmed, Dingyang Wang, Junyoung Park, and Sung Ho Cho. 2021. UWB-gestures, a public dataset of dynamic hand gestures acquired using impulse radar sensors. Sci. Data 8, 102 (April2021), 1–9.
[6]
Ahmad Akl and Shahrokh Valaee. 2010. Accelerometer-based gesture recognition via dynamic-time warping, affinity propagation, & compressive sensing. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. 2270–2273.
[7]
Akram Al-Hourani, Robin J. Evans, Peter M. Farrell, Bill Moran, Marco Martorella, Sithamparanathan Kandeepan, Stan Skafidas, and Udaya Parampalli. 2018. Millimeter-wave integrated radar systems and techniques. In Academic Press Library in Signal Processing, Volume 7, Rama Chellappa and Sergios Theodoridis (Eds.). Academic Press, 317–363.
[8]
Mohammed Alloulah, Anton Isopoussu, and Fahim Kawsar. 2018. On indoor human sensing using commodity radar. In Proceedings of the ACM International Joint Conference and International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers (UbiComp’18). Association for Computing Machinery, New York, NY, 1331–1336.
[9]
Moeness G. Amin, Zhengxin Zeng, and Tao Shan. 2019. Hand gesture recognition based on radar micro-doppler signature envelopes. In Proceedings of the IEEE International Radar Conference (RADAR’19). IEEE, Los Alamitos, CA, 1–6. ISSN: 2375-5318.
[10]
Moeness G. Amin, Zhengxin Zeng, and Tao Shan. 2020. Arm motion classification using curve matching of maximum instantaneous doppler frequency signatures. In Proceedings of the IEEE International Radar Conference (RADAR’20). 303–308.
[11]
Moeness G. Amin, Zhengxin Zeng, Tao Shan, and R. G. Guendel. 2019. Automatic arm motion recognition using radar for smart home technologies. In Proceedings of the IEEE International Radar Conference (RADAR’19). IEEE, Los Alamitos, CA, 1–4. ISSN: 2640-7736.
[12]
Dimitra Anastasiou and Eric Ras. 2020. Gestures in tangible user interfaces. ERCIM News 2020, 120 (2020), 1–52.
[13]
Leonardo Angelini, Denis Lalanne, Elise Van den Hoven, Omar Abou Khaled, and Elena Mugellini. 2015. Move, hold and touch: A framework for tangible gesture interactive systems. Machines 3, 3 (2015), 173–207.
[14]
Caroline Appert and Shumin Zhai. 2009. Using strokes as command shortcuts: Cognitive benefits and toolkit support. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’09). Association for Computing Machinery, New York, NY, 2289–2298.
[15]
Ferran Argelaguet, Mélanie Ducoffe, Anatole Lécuyer, and Remi Gribonval. 2017. Spatial and rotation invariant 3D gesture recognition based on sparse representation. In Proceedings of the IEEE Symposium on 3D User Interfaces(3DUI’17). IEEE, Los Alamitos, CA, 158–167.
[16]
M. Arsalan and A. Santra. 2019. Character recognition in air-writing based on network of radars for human-machine interface. IEEE Sens. J. 19, 19 (October2019), 8855–8864.
[17]
Kongphum Arthamanolap, Somprasong Gabbualoy, and Pattarapong Phasukkit. 2019. Doppler radar for dynamic hand gesture recognition based on signal image processing. In Proceedings of 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON’19). IEEE, Los Alamitos, CA, 931–934.
[18]
Nuwan T. Attygalle, Luis A. Leiva, Matjaz Kljun, Christian Sandor, Alexander Plopski, Hirokazu Kato, and Klen Copic Pucihar. 2021. No interface, no problem: Gesture recognition on physical objects using radar sensing. Sensors 21, 17 (2021), 5771.
[19]
Daniel Avrahami, Mitesh Patel, Yusuke Yamaura, and Sven Kratz. 2018. Below the surface: Unobtrusive activity recognition for work surfaces using RF-radar sensing. In Proceedings of the 23rd International Conference on Intelligent User Interfaces (IUI’18). Association for Computing Machinery, New York, NY, 439–451.
[20]
Daniel Avrahami, Mitesh Patel, Yusuke Yamaura, Sven Kratz, and Matthew Cooper. 2019. Unobtrusive activity recognition and position estimation for work surfaces using RF-radar sensing. ACM Trans. Interact. Intell. Syst. 10, 1, Article 11 (August2019), 28 pages.
[21]
Alan Bannon, Richard Capraru, and Matthew Ritchie. 2020. Exploring gesture recognition with low-cost CW radar modules in comparison to FMCW architectures. In Proceedings of the IEEE International Radar Conference (RADAR’20). IEEE, Los Alamitor, CA, 744–748. ISSN: 2640-7736.
[22]
Abel Díaz Berenguer, Meshia Cédric Oveneke, Habib-Ur-Rehman Khalid, Mitchel Alioscha-Perez, André Bourdoux, and Hichem Sahli. 2019. GestureVLAD: Combining unsupervised features representation and spatio-temporal aggregation for doppler-radar gesture recognition. IEEE Access 7 (2019), 137122–137135.
[23]
Alan Bole, Alan Wall, and Andy Norris. 2014. The radar system: Technical principles. In Radar and ARPA Manual (3rd edition), Alan Bole, Alan Wall, and Andy Norris (Eds.). Butterworth-Heinemann, Oxford, 29–137.
[24]
Andrew Bragdon, Rob DeLine, Ken Hinckley, and Meredith Ringel Morris. 2011. Code space: Touch + air gesture hybrid interactions for supporting developer meetings. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces (ITS’11). Association for Computing Machinery, New York, NY, 212–221.
[25]
Sanders Brandon. 2014. Mastering Leap Motion. Packt Publishing, Birmingham.
[26]
Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Laurent Bouillon, and Jean Vanderdonckt. 2003. A unifying reference framework for multi-target user interfaces. Interact. Comput. 15, 3 (2003), 289–308.
[27]
Zhaoxi Chen, Gang Li, Francesco Fioranelli, and Hugh Griffiths. 2019. Dynamic hand gesture classification based on multistatic radar micro-doppler signatures using convolutional neural network. In Proceedings of the IEEE International Radar Conference (RADAR’19). IEEE, Los Alamitos, CA, 1–5. ISSN: 2375-5318.
[28]
Hong Cheng, Lu Yang, and Zicheng Liu. 2016. Survey on 3D hand gesture recognition. IEEE Trans. Circ. Syst. Vid. Technol. 26, 9 (2016), 1659–1673.
[29]
J. Choi, S. Ryu, and J. Kim. 2019. Short-range radar based real-time hand gesture recognition using LSTM encoder. IEEE Access 7 (2019), 33610–33618.
[30]
Klen Copič Pucihar, Nuwan T. Attygalle, Matjaž Kljun, Christian Sandor, and Luis A. Leiva. 2022. Solids on soli: Millimetre-wave radar sensing through materials. Proc. ACM Hum.-Comput. Interact. 6, Article 156 (June2022), 21 pages.
[31]
Klen Copič Pucihar, Christian Sandor, Matjaž Kljun, Wolfgang Huerst, Alexander Plopski, Takafumi Taketomi, Hirokazu Kato, and Luis A. Leiva. 2019. The missing interface: Micro-gestures on augmented objects. In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA’19). Association for Computing Machinery, New York, NY, 1–6.
[32]
Adrien Coyette, Sascha Schimke, Jean Vanderdonckt, and Claus Vielhauer. 2007. Trainable sketch recognizer for graphical user interface design. In Proceedings of 11th IFIP TC 13 International Conference on Human-Computer Interaction (INTERACT’07),Lecture Notes in Computer Science, Vol. 4662, Maria Cecília Calani Baranauskas, Philippe A. Palanque, Julio Abascal, and Simone Diniz Junqueira Barbosa (Eds.). Springer, 124–135.
[33]
Albéric De Coster, Anh Phuong Tran, and Sébastien Lambot. 2016. Fundamental analyses on layered media reconstruction using GPR and full-wave inversion in near-field conditions. IEEE Trans. Geosci. Remote Sens. 54, 9 (2016), 5143–5158.
[34]
Quentin De Smedt, Hazem Wannous, Jean-Philippe Vandeborre, J. Guerry, B. Le Saux, and D Filliat. 2017. 3D hand gesture recognition using a depth and skeletal dataset: SHREC’17 track. In Proceedings of the Workshop on 3D Object Retrieval (3Dor’17). Eurographics Association, Goslar, DEU, 33–38.
[35]
Bastiaan Dekker, Sebastiaan Jacobs, A. S. Kossen, Maarten Kruithof C., Albert G. Huizing, and M. Geurts. 2017. Gesture recognition with a low power FMCW radar and a deep convolutional neural network. In Proceedings of the European Radar Conference (EURAD’17). 163–166.
[36]
Anind K. Dey. 2001. Understanding and using context. Pers. Ubiq. Comput. 5, 1 (2001), 4–7.
[37]
C. Du, L. Zhang, X. Sun, J. Wang, and J. Sheng. 2020. Enhanced multi-channel feature synthesis for hand gesture recognition based on CNN with a channel and spatial attention mechanism. IEEE Access 8 (2020), 144610–144620.
[38]
C. Y. Du, X. H. Wang, Z. X. Yuan, and Y. Xu. 2019. Design of gesture recognition system based on 77GHz millimeter wave radar. In Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT’19). 1–3.
[39]
M. Eggimann, J. Erb, P. Mayer, M. Magno, and L. Benini. 2019. Low power embedded gesture recognition using novel short-range radar sensors. In Proceedings of the IEEE SENSORS Conference (SENSORS’19). 1–4. ISSN: 2168-9229.
[40]
M. G. Ehrnsperger, T. Brenner, U. Siart, and T. F. Eibert. 2020. Real-time gesture recognition with shallow convolutional neural networks employing an ultra low cost radar system. In Proceedings of the German Microwave Conference (GeMiC’20). 88–91. ISSN: 2167-8022.
[41]
M. G. Ehrnsperger, H. L. Hoese, U. Siart, and T. F. Eibert. 2019. Performance investigation of machine learning algorithms for simple human gesture recognition employing an ultra low cost radar system. In Proceedings of the Kleinheubach Conference. 1–4.
[42]
X. Feng, Q. Song, Q. Guo, D. Liu, Z. Zhao, and Y. Zhao. 2019. Hand gesture recognition with ensemble time-frequency signatures using enhanced deep convolutional neural network. In Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC’19). 1602–1605. ISSN: 2640-0103.
[43]
L. O. Fhager, S. Heunisch, H. Dahlberg, A. Evertsson, and L. Wernersson. 2019. Pulsed millimeter wave radar for hand gesture sensing and classification. IEEE Sens. Lett. 3, 12 (December2019), 1–4.
[44]
Zak Flintoff, Bruno Johnston, and Minas Liarokapis. 2018. Single-grasp, model-free object classification using a hyper-adaptive hand, google soli, and tactile sensors. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’18). 1943–1950.
[45]
A. Ghaffar, F. Khan, and S. H. Cho. 2019. Hand pointing gestures based digital menu board implementation using IR-UWB transceivers. IEEE Access 7 (2019), 58148–58157.
[46]
Bogdan-Florin Gheran, Jean Vanderdonckt, and Radu-Daniel Vatavu. 2018. Gestures for smart rings: Empirical results, insights, and design implications. In Proceedings of the Designing Interactive Systems Conference (DIS’18), Ilpo Koskinen, Youn-Kyung Lim, Teresa Cerratto Pargman, Kenny K. N. Chow, and William Odom (Eds.). ACM, 623–635.
[47]
Andrew Gigie, Smriti Rani, Arijit Chowdhury, Tapas Chakravarty, and Arpan Pal. 2019. An agile approach for human gesture detection using synthetic radar data. In Adjunct Proceedings of the International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of theACM International Symposium on Wearable Computers (UbiComp/ISWC’19 Adjunct). Association for Computing Machinery, New York, NY, 558–564.
[48]
Pınar Göker and Memduha Gülhal Bozkir. 2017. Determination of hand and palm surface areas as a percentage of body surface area in turkish young adults. Trauma Emerg. Care 2, 4 (May2017), 1–4.
[49]
P. Goswami, S. Rao, S. Bharadwaj, and A. Nguyen. 2019. Real-time multi-gesture recognition using 77 GHz FMCW MIMO single chip radar. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE’19). 1–4. ISSN: 2158-4001.
[50]
Changzhan Gu, Jian Wang, and Jaime Lien. 2019. Motion sensing using radar: Gesture interaction and beyond. IEEE Microw. Mag. 20, 8 (August 2019), 44–57.
[51]
S. Z. Gurbuz, A. C. Gurbuz, E. A. Malaia, D. J. Griffin, C. Crawford, E. Kurtoglu, M. M. Rahman, R. Aksu, and R. Mdrafi. 2020. ASL recognition based on kinematics derived from a multi-frequency RF sensor network. In Proceedings of the IEEE SENSORS Conference (SENSORS’20). 1–4. ISSN: 2168-9229.
[52]
Eiji Hayashi, Jaime Lien, Nicholas Gillian, Leonardo Giusti, Dave Weber, Jin Yamanaka, Lauren Bedal, and Ivan Poupyrev. 2021. RadarNet: Efficient gesture recognition technique utilizing a miniature radar sensor. In Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI’21). Association for Computing Machinery, New York, NY, Article 5, 14 pages.
[53]
S. Hazra and A. Santra. 2018. Robust gesture recognition using millimetric-wave radar system. IEEE Sens. Lett. 2, 4 (December2018), 1–4.
[54]
S. Hazra and A. Santra. 2019. Radar gesture recognition system in presence of interference using self-attention neural network. In Proceedings of the 18th IEEE International Conference on Machine Learning and Applications (ICMLA’19). 1409–1414.
[55]
S. Hazra and A. Santra. 2019. Short-range radar-based gesture recognition system using 3D CNN with triplet loss. IEEE Access 7 (2019), 125623–125633.
[56]
M. Hoffman, P. Varcholik, and J. J. LaViola. 2010. Breaking the status quo: Improving 3D gesture recognition with spatially convenient input devices. In Proceedings of the IEEE Virtual Reality Conference (VR’10). 59–66.
[57]
Jinmiao Huang, Prakhar Jaiswal, and Rahul Rai. 2019. Gesture-based system for next generation natural and intuitive interfaces. Artif. Intell. Eng. Des. Anal. Manufact. 33, 1 (2019), 54–68.
[58]
Cloe Huesser, Simon Schubiger, and Arzu Çöltekin. 2021. Gesture interaction in virtual reality. In Proceedings of the Human-Computer Interaction Conference (INTERACT’21), Carmelo Ardito, Rosa Lanzilotti, Alessio Malizia, Helen Petrie, Antonio Piccinno, Giuseppe Desolda, and Kori Inkpen (Eds.). Springer International Publishing, Cham, 151–160.
[59]
K. Ishak, N. Appenrodt, J. Dickmann, and C. Waldschmidt. 2018. Human motion training data generation for radar based deep learning applications. In Proceedings of the IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM’18). 1–4.
[60]
Z. Kang, L. Shengchang, and Z. Guiyuan. 2019. Mining spatio-temporal features from mmw radar echoes for hand gesture recognition. In Proceedings of the IEEE Asia-Pacific Microwave Conference (APMC’19). 93–95.
[61]
N. Kern, M. Steiner, R. Lorenzin, and C. Waldschmidt. 2020. Robust doppler-based gesture recognition with incoherent automotive radar sensor networks. IEEE Sens. Lett. 4, 11 (November2020), 1–4.
[62]
Faheem Khan, Seong Kyu Leem, and Sung Ho Cho. 2017. Hand-based gesture recognition for vehicular applications using IR-UWB radar. Sensors 17, 4 (2017), 1–18.
[63]
F. Khan, S. K. Leem, and S. H. Cho. 2020. In-air continuous writing using UWB impulse radar sensors. IEEE Access 8 (2020), 99302–99311.
[64]
Rami N. Khushaba and Andrew John Hill. 2022. Radar-based materials classification using deep wavelet scattering transform: A comparison of centimeter vs. millimeter wave units. IEEE Robot. Autom. Lett. 7, 2 (2022), 2016–2022.
[65]
S. Y. Kim, H. G. Han, J. W. Kim, S. Lee, and T. W. Kim. 2017. A hand gesture recognition sensor using reflected impulses. IEEE Sens. J. 17, 10 (May2017), 2975–2976.
[66]
Y. Kim and B. Toomajian. 2016. Hand gesture recognition using micro-doppler signatures with convolutional neural network. IEEE Access 4 (2016), 7125–7130.
[67]
Y. Kim and B. Toomajian. 2017. Application of doppler radar for the recognition of hand gestures using optimized deep convolutional neural networks. In Proceedings of the 11th European Conference on Antennas and Propagation (EUCAP’17). 1258–1260.
[68]
Barbara Kitchenham, Rialette Pretorius, David Budgen, O. Pearl Brereton, Mark Turner, Mahmood Niazi, and Stephen Linkman. 2010. Systematic literature reviews in software engineering—A tertiary study. Inf. Softw. Technol. 52, 8 (2010), 792–805.
[69]
D. Kohlsdorf, T. Starner, and D. Ashbrook. 2011. MAGIC 2.0: A web tool for false positive prediction and prevention for gesture recognition systems. In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition (FG’11). 1–6.
[70]
H. Kulhandjian, P. Sharma, M. Kulhandjian, and C. D’Amours. 2019. Sign language gesture recognition using doppler radar and deep learning. In Proceedings of the IEEE Globecom Workshops (GC Wkshps’19). 1–6.
[71]
Sébastien Lambot and Frédéric André. 2014. Full-wave modeling of near-field radar data for planar layered media reconstruction. IEEE Trans. Geosci. Remote Sens. 52, 5 (2014), 2295–2303.
[72]
Sébastien Lambot, E.C. Slob, Idesbald van den Bosch, Benoit Stockbroeckx, and Marnik Vanclooster. 2004. Modeling of ground-penetrating Radar for accurate characterization of subsurface electric properties. IEEE Trans. Geosci. Remote Sens. 42, 11 (2004), 2555–2568.
[73]
S. Lan, Z. He, W. Chen, and L. Chen. 2018. Hand gesture recognition using convolutional neural networks. In Proceedings of the USNC-URSI Radio Science Meeting (Joint with AP-S Symposium). 147–148.
[74]
S. Lan, Z. He, H. Tang, K. Yao, and W. Yuan. 2017. A hand gesture recognition system based on 24 GHz radars. In Proceedings of the International Symposium on Antennas and Propagation (ISAP’17). 1–2.
[75]
S. Lan, Z. He, K. Yao, and W. Chen. 2018. Hand gesture recognition using a three-dimensional 24 GHz radar array. In Proceedings of the IEEE/MTT-S International Microwave Symposium (IMS’18). 138–140. ISSN: 2576-7216.
[76]
Gierad Laput and Chris Harrison. 2019. Sensing Fine-Grained Hand Activity with Smartwatches. Association for Computing Machinery, New York, NY, 1–13.
[77]
Gierad Laput, Robert Xiao, Xiang “Anthony” Chen, Scott E. Hudson, and Chris Harrison. 2014. Skin buttons: Cheap, small, low-powered and clickable fixed-icon laser projectors. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST’14), Hrvoje Benko, Mira Dontcheva, and Daniel Wigdor (Eds.). ACM, 389–394.
[78]
Joseph J. LaViola. 2013. 3D gestural interaction: The state of the field. Int. Scholar. Res. Not. 2013, Article 514641 (2013), 18 pages.
[79]
Hyo Ryun Lee, Jihun Park, and Young-Joo Suh. 2020. Improving classification accuracy of hand gesture recognition based on 60 GHz FMCW radar with deep learning domain adaptation. Electronics 9, 12 (2020), 1–24.
[80]
Joo-Young Lee, Jeong-Wha Choi, and Ho Kim. 2007. Determination of hand surface area by sex and body shape using alginate. J. Physiol. Anthropol. 26, 4 (2007), 475–483.
[81]
S. K. Leem, F. Khan, and S. H. Cho. 2020. Detecting mid-air gestures for digit writing with radio sensors and a CNN. IEEE Trans. Instrum. Meas. 69, 4 (April2020), 1066–1081.
[82]
S. K. Leem, F. Khan, and S. H. Cho. 2020. Remote authentication using an ultra-wideband radio frequency transceiver. In Proceedings of the IEEE 17th Annual Consumer Communications Networking Conference (CCNC’20). 1–8. ISSN: 2331-9860.
[83]
Feifei Li, Yujun Li, Baozhen Du, Hongji Xu, Hailiang Xiong, and Min Chen. 2019. A gesture interaction system based on improved finger feature and WE-KNN. In Proceedings of the 4th International Conference on Mathematics and Artificial Intelligence (ICMAI 2019). Association for Computing Machinery, New York, NY, 39–43.
[84]
G. Li, R. Zhang, M. Ritchie, and H. Griffiths. 2017. Sparsity-based dynamic hand gesture recognition using micro-doppler signatures. In Proceedings of the IEEE Radar Conference (RadarConf’17). 0928–0931. ISSN: 2375-5318.
[85]
G. Li, R. Zhang, M. Ritchie, and H. Griffiths. 2018. Sparsity-driven micro-doppler feature extraction for dynamic hand gesture recognition. IEEE Trans. Aerosp. Electron. Syst. 54, 2 (April2018), 655–665.
[86]
G. Li, S. Zhang, F. Fioranelli, and H. Griffiths. 2018. Effect of sparsity-aware time–frequency analysis on dynamic hand gesture classification with radar micro-doppler signatures. IET Radar Sonar Navig. 12, 8 (2018), 815–820.
[87]
H. Li, X. Liang, A. Shrestha, Y. Liu, H. Heidari, J. Le Kernec, and F. Fioranelli. 2020. Hierarchical sensor fusion for micro-gesture recognition with pressure sensor array and radar. IEEE J. Electromagn. RF Microw. Med. Biol. 4, 3 (September2020), 225–232.
[88]
Hao-Yang Li, Han-Ting Zhao, Meng-Lin Wei, Heng-Xin Ruan, Ya Shuang, Tie Jun Cui, Philipp del Hougne, and Lianlin Li. 2020. Intelligent electromagnetic sensing with learnable data acquisition and processing. Patterns 1, 1 (2020), 100006.
[89]
Tuanjie Li and Mengmeng Ge. 2009. Human motion recognition using ultra-wideband radar and cameras on mobile robot. Trans. Tianjin Univ. 15, 5 (October2009), 381–387.
[90]
Tianxing Li, Xi Xiong, Yifei Xie, George Hito, Xing-Dong Yang, and Xia Zhou. 2017. Reconstructing hand poses using visible light. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 1, 3, Article 71 (September2017), 20 pages.
[91]
H. Liang, X. Wang, M. S. Greco, and F. Gini. 2020. Enhanced hand gesture recognition using continuous wave interferometric radar. In Proceedings of the IEEE International Radar Conference (RADAR’20). 226–231. ISSN: 2640-7736.
[92]
Jaime Lien, Nicholas Gillian, M. Emre Karagozler, Patrick Amihood, Carsten Schwesig, Erik Olson, Hakim Raja, and Ivan Poupyrev. 2016. Soli: Ubiquitous gesture sensing with millimeter wave radar. ACM Trans. Graph. 35, 4 (July2016), 142:1–142:19.
[93]
C. Liu, Y. Li, D. Ao, and H. Tian. 2019. Spectrum-based hand gesture recognition using millimeter-wave radar parameter measurements. IEEE Access 7 (2019), 79147–79158.
[94]
Haipeng Liu, Yuheng Wang, Anfu Zhou, Hanyue He, Wei Wang, Kunpeng Wang, Peilin Pan, Yixuan Lu, Liang Liu, and Huadong Ma. 2020. Real-time arm gesture recognition in smart home scenarios via millimeter wave sensing. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 4, 4 (December2020), 140:1–140:28.
[95]
Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. 2009. UWave: Accelerometer-based personalized gesture recognition and its applications. Perv. Mob. Comput. 5, 6 (December2009), 657–675.
[96]
Yu Liu, Yuheng Wang, Haipeng Liu, Anfu Zhou, Jianhua Liu, and Ning Yang. 2020. Long-range gesture recognition using millimeter wave radar. In Green, Pervasive, and Cloud Computing, Zhiwen Yu, Christian Becker, and Guoliang Xing (Eds.). Vol. 12398. Springer International Publishing, Cham, 30–44.
[97]
Olga Lopera, Evert C. Slob, Nada Milisavljevic, and Sébastien Lambot. 2007. Filtering soil surface and antenna effects from GPR data to enhance landmine detection. IEEE Trans. Geosci. Remote Sens. 45, 3 (March2007), 707–717.
[98]
X. Lou, Z. Yu, Z. Wang, K. Zhang, and B. Guo. 2018. Gesture-radar: Enabling natural human-computer interactions with radar-based adaptive and robust Arm gesture recognition. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC’18). 4291–4297. ISSN: 2577-1655.
[99]
Mehran Maghoumi and Joseph J. LaViola. 2019. DeepGRU: Deep gesture recognition utility. In Advances in Visual Computing, George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, Daniela Ushizima, Sek Chai, Shinjiro Sueda, Xin Lin, Aidong Lu, Daniel Thalmann, Chaoli Wang, and Panpan Xu (Eds.). Springer International Publishing, Cham, 16–31.
[100]
Nathan Magrofuoco, Paolo Roselli, and Jean Vanderdonckt. 2022. Two-dimensional stroke gesture recognition: A survey. Comput. Surv. 54, 7 (2022), 155:1–155:36.
[101]
G. Malysa, D. Wang, L. Netsch, and M. Ali. 2016. Hidden markov model-based gesture recognition with FMCW radar. In Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP’16). 1017–1021.
[102]
Jess McIntosh, Mike Fraser, Paul Worgan, and Asier Marzo. 2017. DeskWave: Desktop interactions using low-cost microwave doppler arrays. In Proceedings of the CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA’17). Association for Computing Machinery, New York, NY, 1885–1892.
[103]
Antigoni Mezari and Ilias Maglogiannis. 2017. Gesture recognition using symbolic aggregate approximation and dynamic time warping on motion data. In Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth’17). Association for Computing Machinery, New York, NY, 342–347.
[104]
Elishiah Miller, Zheng Li, Helena Mentis, Adrian Park, Ting Zhu, and Nilanjan Banerjee. 2020. RadSense: Enabling one hand and no hands interaction for sterile manipulation of medical images using doppler radar. Smart Health 15 (2020), 100089.
[105]
Julien Minet, Sébastien Lambot, Evert C. Slob, and Marnik Vanclooster. 2010. Soil surface water content estimation by full-waveform GPR signal inversion in the presence of thin layers. IEEE Trans. Geosci. Remote Sens. 48, 3 (2010), 1138–1150.
[106]
P. Molchanov, S. Gupta, K. Kim, and K. Pulli. 2015. Multi-sensor system for driver’s hand-gesture recognition. In Proceedings of the 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG’15), Vol. 1. 1–8.
[107]
M. Q. Nguyen, A. Flores-Nigaglioni, and C. Li. 2018. Range-gating technology for millimeter-wave radar remote gesture control in IoT applications. In Proceedings of the IEEE MTT-S International Wireless Symposium (IWS’18). 1–4.
[108]
Prathyusha Nimmagadda and Hemalatha Inteti. 2019. Signal analysis based radar imaging using rdar sensor. Pramana Res. J. 9, 6 (July2019), 1919–1924.
[109]
J. Oberhammer, N. Somjit, U. Shah, and Z. Baghchehsaraei. 2013. 16 - RF MEMS for automotive radar. In Handbook of Mems for Wireless and Mobile Applications, Deepak Uttamchandani (Ed.). Woodhead Publishing, 518–549.
[110]
Institute of Electrical and Electronics Engineers. 2020. IEEE standard letter designations for radar-frequency bands. IEEE Std 521-2019 (Revision of IEEE Std 521-2002) (2020), 1–15. https://ieeexplore.ieee.org/document/8999849.
[111]
Matthew J. Page, David Moher, Patrick M. Bossuyt, Isabelle Boutron, Tammy C. Hoffmann, Cynthia D. Mulrow, Larissa Shamseer, Jennifer M. Tetzlaff, Elie A. Akl, Sue E. Brennan, Roger Chou, Julie Glanville, Jeremy M. Grimshaw, Asbjørn Hróbjartsson, Manoj M. Lalu, Tianjing Li, Elizabeth W. Loder, Evan Mayo-Wilson, Steve McDonald, Luke A. McGuinness, Lesley A. Stewart, James Thomas, Andrea C. Tricco, Vivian A. Welch, Penny Whiting, and Joanne E. McKenzie. 2021. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. Br. Med. J. 372 (2021), 1–36.
[112]
Sameera Palipana, Dariush Salami, Luis A. Leiva, and Stephan Sigg. 2021. Pantomime: Mid-air gesture recognition with sparse millimeter-wave radar point clouds. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 5, 1 (March2021), 27:1–27:27.
[113]
Joseph Paradiso, Craig Abler, Kai-yuh Hsiao, and Matthew Reynolds. 1997. The magic carpet: Physical sensing for immersive environments. In Proceedings of the CHI’97 Extended Abstracts on Human Factors in Computing Systems (CHI EA’97). Association for Computing Machinery, New York, NY, 277–278.
[114]
J. Park and S. H. Cho. 2016. IR-UWB radar sensor for human gesture recognition by using machine learning. In Proceedings of the IEEE 18th International Conference on High Performance Computing and Communications, the IEEE 14th International Conference on Smart City, and the IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS’16). 1246–1249.
[115]
J. Park, J. Jang, G. Lee, H. Koh, C. Kim, and T. W. Kim. 2020. A time domain artificial intelligence radar system using 33-ghz direct sampling for hand gesture recognition. IEEE J. Solid-State Circ. 55, 4 (April2020), 879–888.
[116]
Avishek Patra, Philipp Geuer, Andrea Munari, and Petri Mähönen. 2018. mm-wave radar based gesture recognition: Development and evaluation of a low-power, low-complexity system. In Proceedings of the 2nd ACM Workshop on Millimeter Wave Networks and Sensing Systems (mmNets’18). Association for Computing Machinery, New York, NY, 51–56.
[117]
Claudio Patriarca, Sébastien Lambot, M.R. Mahmoudzadeh, Julien Minet, and Evert Slob. 2011. Reconstruction of sub-wavelength fractures and physical properties of masonry media using full-waveform inversion of proximal penetrating radar. J. Appl. Geophys. 74, 1 (2011), 26–37.
[118]
Jorge Luis Pérez Medina, Jean Vanderdonckt, Albéric De Coster, and Sébastien Lambot. 2019. Mobile direct visualization of pipes, apexes, and water leaks in water distribution networks. In Proceedings of the 6th International Conference on eDemocracy & eGovernment (ICEDEG’19). 172–179.
[119]
A. Ren, Y. Wang, X. Yang, and M. Zhou. 2020. A dynamic continuous hand gesture detection and recognition method with FMCW radar. In Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC’20). 1208–1213. ISSN: 2377-8644.
[120]
Yuwei Ren, Jiuyuan Lu, Andrian Beletchi, Yin Huang, Ilia Karmanov, Daniel Fontijne, Chirag Patel, and Hao Xu. 2021. Hand gesture recognition using 802.11ad mmWave sensor in the mobile device. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW’21). 1–6.
[121]
M. Ritchie, R. Capraru, and F. Fioranelli. 2020. Dop-NET: A micro-doppler radar data challenge. Electr. Lett. 56, 11 (2020), 568–570.
[122]
M. Ritchie, A. Jones, J. Brown, and H. D. Griffiths. 2017. Hand gesture classification using 24 GHz FMCW dual polarised radar. In Proceedings of the International Conference on Radar Systems (Radar’17). 1–6.
[123]
J. Rožman, H. Hagras, J. A. Perez, D. Clarke, B. Müller, and S. F. Data. 2020. Privacy-preserving gesture recognition with explainable type-2 fuzzy logic based systems. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’20). 1–8. ISSN: 1558-4739.
[124]
S. Ryu, J. Suh, S. Baek, S. Hong, and J. Kim. 2018. Feature-based hand gesture recognition using an FMCW radar and its temporal feature analysis. IEEE Sens. J. 18, 18 (September2018), 7593–7602.
[125]
T. Sakamoto, X. Gao, E. Yavari, A. Rahman, O. Boric-Lubecke, and V. M. Lubecke. 2017. Radar-based hand gesture recognition using I-Q echo plot and convolutional neural network. In Proceedings of the IEEE Conference on Antenna Measurements Applications (CAMA’17). 393–395.
[126]
T. Sakamoto, X. Gao, E. Yavari, A. Rahman, O. Boric-Lubecke, and V. M. Lubecke. 2018. Hand gesture recognition using a radar echo I–Q plot and a convolutional neural network. IEEE Sens. Lett. 2, 3 (September2018), 1–4.
[127]
Ugo Braga Sangiorgi, François Beuvens, and Jean Vanderdonckt. 2012. User interface design by collaborative sketching. In Proceedings of the ACM International Conference on Designing Interactive Systems (DIS’12). ACM, 378–387.
[128]
P. S. Santhalingam, Y. Du, R. Wilkerson, A. A. Hosain, D. Zhang, P. Pathak, H. Rangwala, and R. Kushalnagar. 2020. Expressive ASL recognition using millimeter-wave wireless signals. In Proceedings of the 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON’20). 1–9. ISSN: 2155-5494.
[129]
Panneer Selvam Santhalingam, Al Amin Hosain, Ding Zhang, Parth Pathak, Huzefa Rangwala, and Raja Kushalnagar. 2020. mmASL: Environment-independent ASL gesture recognition using 60 GHz millimeter-wave signals. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 4, 1 (March2020), 26:1–26:30.
[130]
Ben Shneiderman. 1992. Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans. Graph. 11, 1 (January1992), 92–99.
[131]
Alexandru-Ionut Siean, Cristian Pamparau, and Radu-Daniel Vatavu. 2022. Scenario-based exploration of integrating radar sensing into everyday objects for free-hand television control. In Proceedings of the ACM International Conference on Interactive Media Experiences (IMX’22). ACM, New York, NY, 357–362.
[132]
S. Skaria, A. Al-Hourani, and R. J. Evans. 2020. Deep-learning methods for hand-gesture recognition using ultra-wideband radar. IEEE Access 8 (2020), 203580–203590.
[133]
S. Skaria, A. Al-Hourani, M. Lech, and R. J. Evans. 2019. Hand-gesture recognition using two-antenna doppler radar with deep convolutional neural networks. IEEE Sens. J. 19, 8 (April2019), 3041–3048.
[134]
S. Skaria, D. Huang, A. Al-Hourani, R. J. Evans, and M. Lech. 2020. Deep-learning for hand-gesture recognition with simultaneous thermal and radar sensors. In Proceedings of the IEEE SENSORS Conference (SENSORS’20). 1–4. ISSN: 2168-9229.
[135]
Evert Slob, Motoyuki Sato, and Gary Olhoeft. 2010. Surface and borehole ground-penetrating-radar developments. Geophysics 75, 5 (2010), 75A103–75A120.
[136]
Arthur Sluÿters, Sébastien Lambot, and Jean Vanderdonckt. 2022. Hand gesture recognition for an off-the-shelf radar by electromagnetic modeling and inversion. In Proceedings of the 27th International Conference on Intelligent User Interfaces (IUI’22), Giulio Jacucci, Samuel Kaski, Cristina Conati, Simone Stumpf, Tuukka Ruotsalo, and Krzysztof Gajos (Eds.). ACM, 506–522.
[137]
Arthur Sluÿters, Mehdi Ousmer, Paolo Roselli, and Jean Vanderdonckt. 2022. QuantumLeap, a framework for engineering gestural user interfaces based on the leap motion controller. Proc. ACM Hum.-Comput. Interact. 6, EICS, Article 161 (jun2022), 47 pages.
[138]
K. A. Smith, C. Csech, D. Murdoch, and G. Shaker. 2018. Gesture recognition using mm-wave sensor for human-car interface. IEEE Sens. Lett. 2, 2 (June2018), 1–4.
[139]
W. Stern. 1929. Versuch einer elektrodynamischen dickenmessung von gletschereis. Gerl. Beitr. Geophys. 27 (1929), 292–333. https://cir.nii.ac.jp/crid/1570572700956541952
[140]
J. S. Suh, S. Ryu, B. Han, J. Choi, J. Kim, and S. Hong. 2018. 24 GHz FMCW radar system for real-time hand gesture recognition using LSTM. In Proceedings of the Asia-Pacific Microwave Conference (APMC’18). 860–862.
[141]
Y. Sun, T. Fei, S. Gao, and N. Pohl. 2019. Automatic radar-based gesture detection and classification via a region-based deep convolutional neural network. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’19). 4300–4304.
[142]
Y. Sun, T. Fei, X. Li, A. Warnecke, E. Warsitz, and N. Pohl. 2020. Multi-feature encoder for radar-based gesture recognition. In Proceedings of the IEEE International Radar Conference (RADAR’20). 351–356.
[143]
Y. Sun, T. Fei, X. Li, A. Warnecke, E. Warsitz, and N. Pohl. 2020. Real-time radar-based gesture detection and recognition built in an edge-computing platform. IEEE Sens. J. 20, 18 (September2020), 10706–10716.
[144]
Y. Sun, T. Fei, F. Schliep, and N. Pohl. 2018. Gesture classification with handcrafted micro-doppler features using a FMCW radar. In Proceedings of the IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM’18). 1–4.
[145]
Adrian Tang, Robert Carey, Gabriel Virbila, Yan Zhang, Rulin Huang, and Mau-Chung Frank Chang. 2020. A delay-correlating direct-sequence spread-spectrum (DS/SS) radar system-on-chip operating at 183–205 GHz in 28 nm CMOS. IEEE Trans. Terahertz Sci. Technol. 10, 2 (2020), 212–220.
[146]
Eugene M. Taranta II, Amirreza Samiei, Mehran Maghoumi, Pooya Khaloo, Corey R. Pittman, and Joseph J. LaViola Jr.2017. Jackknife: A reliable recognizer with few samples and many modalities. In Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI’17). ACM, New York, NY, 5850–5861.
[147]
A. Tzadok, A. Valdes-Garcia, P. Pepeljugoski, J.-O. Plouchart, M. Yeck, and H. Liu. 2020. AI-driven event recognition with a real-time 3D 60-GHz radar system. In Proceedings of the IEEE/MTT-S International Microwave Symposium (IMS’20). 795–798. ISSN: 2576-7216.
[148]
Laurens van der Maaten, Eric Postma, and H. Herik. 2009. Dimensionality reduction: A comparative review. J. Mach. Learn. Res. 10 (12009), 66–71.
[149]
Baptist Vandersmissen, Nicolas Knudde, Azarakhsh Jalalvand, Ivo Couckuyt, Tom Dhaene, and Wesley De Neve. 2020. Indoor human activity recognition using high-dimensional sensors and deep neural networks. Neural Comput. Appl. 32, 16 (August2020), 12295–12309.
[150]
Radu-Daniel Vatavu, Laurent Grisoni, and Stefan Gheorghe Pentiuc. 2007. Gesture recognition based on elastic deformation energies. In Proceedings of the 7th Workshop on Gesture-Based Human-Computer Interaction and Simulation (GW 2007),Lecture Notes in Computer Science, Vol. 5085, Miguel Sales Dias, Sylvie Gibet, Marcelo M. Wanderley, and Rafael Bastos (Eds.). Springer, 1–12.
[151]
Radu-Daniel Vatavu and Jacob O. Wobbrock. 2015. Formalizing agreement analysis for elicitation studies: New measures, significance test, and toolkit. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI’15), Bo Begole, Jinwoo Kim, Kori Inkpen, and Woontack Woo (Eds.). ACM, 1325–1334.
[152]
Radu-Daniel Vatavu. 2013. The impact of motion dimensionality and bit cardinality on the design of 3D gesture recognizers. Int. J. Hum.-Comput. Stud. 71, 4 (2013), 387–409.
[153]
Radu-Daniel Vatavu, Lisa Anthony, and Jacob O. Wobbrock. 2012. Gestures as point clouds: A $P recognizer for user interface prototypes. In Proceedings of the 14th ACM International Conference on Multimodal Interaction (ICMI’12). Association for Computing Machinery, New York, NY, 273–280.
[154]
Radu-Daniel Vatavu, Lisa Anthony, and Jacob O. Wobbrock. 2018. $Q: A super-quick, articulation-invariant stroke-gesture recognizer for low-resource devices. In Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI’18). Association for Computing Machinery, New York, NYUSA.
[155]
Santiago Villarreal-Narvaez, Alexandru-Ionuţ Şiean, Arthur Sluÿters, Radu-Daniel Vatavu, and Jean Vanderdonckt. 2022. Informing future gesture elicitation studies for interactive applications that use radar sensing. In Proceedings of the International Conference on Advanced Visual Interfaces (AVI’22). Association for Computing Machinery, New York, NY, Article 50, 3 pages.
[156]
O. Viunytskyi and A. Totsky. 2017. Novel bispectrum-based wireless vision technique using disturbance of electromagnetic field by human gestures. In Proceedings of the Signal Processing Symposium (SPSympo’17). 1–4.
[157]
Q. Wan, Y. Li, C. Li, and R. Pal. 2014. Gesture recognition for smart home applications using portable radar sensors. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 6414–6417.
[158]
L. Wang, Z. Cao, Z. Cui, C. Cao, and Y. Pi. 2020. Negative latency recognition method for fine-grained gestures based on terahertz radar. IEEE Trans. Geosci. Remote Sens. 58, 11 (November2020), 7955–7968.
[159]
L. Wang, Z. Cui, Z. Cao, S. Xu, and R. Min. 2019. Fine-grained gesture recognition based on high resolution range profiles of terahertz radar. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS’19). 1470–1473. ISSN: 2153-7003.
[160]
P. Wang, J. Lin, F. Wang, J. Xiu, Y. Lin, N. Yan, and H. Xu. 2020. A gesture air-writing tracking method that uses 24 GHz SIMO Radar SoC. IEEE Access 8 (2020), 152728–152741.
[161]
Saiwen Wang, Jie Song, Jaime Lien, Ivan Poupyrev, and Otmar Hilliges. 2016. Interacting with soli: Exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST’16). Association for Computing Machinery, New York, NY, 851–860.
[162]
Yong Wang, Xiuqian Jia, Mu Zhou, Liangbo Xie, and Zengshan Tian. 2019. A novel F-RCNN based hand gesture detection approach for FMCW systems. Wireless Netw. (July2019), 1–14.
[163]
Y. Wang, A. Ren, M. Zhou, W. Wang, and X. Yang. 2020. A novel detection and recognition method for continuous hand gesture using FMCW radar. IEEE Access 8 (2020), 167264–167275.
[164]
Y. Wang, S. Wang, M. Zhou, Q. Jiang, and Z. Tian. 2019. TS-I3D based hand gesture recognition method with radar sensor. IEEE Access 7 (2019), 22902–22913.
[165]
Y. Wang, S. Wang, M. Zhou, W. Nie, X. Yang, and Z. Tian. 2019. Two-stream time sequential network based hand gesture recognition method using radar sensor. In Proceedings of the IEEE Globecom Workshops (GC Wkshps’19). 1–6.
[166]
Yong Wang, Zedong Zhao, Mu Zhou, and Jinjun Wu. 2019. Two dimensional parameters based hand gesture recognition algorithm for FMCW radar systems. In Wireless and Satellite Systems, Min Jia, Qing Guo, and Weixiao Meng (Eds.), Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering Vol. 280. Springer International Publishing, Cham, 226–234.
[167]
Z. Wang, G. Li, and L. Yang. 2020. Dynamic hand gesture recognition based on micro-doppler radar signatures using hidden gauss-markov models. IEEE Geosci. Remote Sens. Lett. 18, 2 (2020), 291–295.
[168]
Zhu Wang, Xinye Lou, Zhiwen Yu, Bin Guo, and Xingshe Zhou. 2019. Enabling non-invasive and real-time human-machine interactions based on wireless sensing and fog computing. Pers. Ubiq. Comput. 23, 1 (February2019), 29–41.
[169]
Craig Warren, Antonios Giannopoulos, and Iraklis Giannakis. 2016. gprMax: Open source software to simulate electromagnetic wave propagation for ground penetrating radar. Comput. Phys. Commun. 209 (2016), 163–170.
[170]
Frank Weichert, Daniel Bachmann, Bartholomäus Rudak, and Denis Fisseler. 2013. Analysis of the accuracy and robustness of the leap motion controller. Sensors 13 (052013), 6380–6393.
[171]
Daniel Wigdor and Dennis Wixon. 2011. Brave NUI World: Designing Natural user Interfaces for Touch and Gesture (1st ed.). Morgan Kaufmann Publishers, Burlington, MA.
[172]
Christian Wolff. 2022. Waves and Frequency Ranges. Retrieved from https://www.radartutorial.eu/07.waves/WavesandFrequencyRanges.en.html.
[173]
Kaijun Wu and Sébastien Lambot. 2022. Effect of radar incident angle on full-wave inversion for the retrieval of medium surface permittivity for drone-borne applications. IEEE Trans. Geosci. Remote Sens. 60 (2022), 1–10.
[174]
Kaijun Wu, Gabriela Arambulo Rodriguez, Marjana Zajc, Elodie Jacquemin, Michiels Clément, Albéric De Coster, and Sébastien Lambot. 2019. A new drone-borne GPR for soil moisture mapping. Remote Sens. Environ. 235 (2019), 111456.
[175]
Te-Yen Wu, Shutong Qi, Junchi Chen, MuJie Shang, Jun Gong, Teddy Seyed, and Xing-Dong Yang. 2020. Fabriccio: Touchless gestural input on interactive fabrics. In Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI’20). Association for Computing Machinery, New York, NY, 1–14.
[176]
Z. Xia, Y. Luomei, C. Zhou, and F. Xu. 2020. Multidimensional feature representation and learning for robust hand-gesture recognition on commercial millimeter-wave radar. IEEE Trans. Geosci. Remote Sens. 59, 6 (2020), 4749–4764.
[177]
L. Yang and G. Li. 2018. Sparsity aware dynamic gesture recognition using radar sensors with angular diversity. IET Radar Sonar Navig. 12, 10 (2018), 1114–1120.
[178]
Hui-Shyong Yeo, Gergely Flamich, Patrick Schrempf, David Harris-Birtill, and Aaron Quigley. 2016. RadarCat: Radar categorization for input & interaction. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (UIST’16). Association for Computing Machinery, New York, NY, 833–841.
[179]
Hui-Shyong Yeo, Ryosuke Minami, Kirill Rodriguez, George Shaker, and Aaron Quigley. 2018. Exploring tangible interactions with radar sensing. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 2, 4, Article 200 (December2018), 25 pages.
[180]
Hui-Shyong Yeo and Aaron Quigley. 2017. Radar sensing in human-computer interaction. Interactions 25, 1 (December2017), 70–73.
[181]
J. Yu, L. Yen, and P. Tseng. 2020. mmWave radar-based hand gesture recognition using range-angle image. In Proceedings of the IEEE 91st Vehicular Technology Conference (VTC2020-Spring’20). 1–5.
[182]
Myoungseok Yu, Narae Kim, Yunho Jung, and Seongjoo Lee. 2020. A frame detection method for real-time hand gesture recognition systems using CW-radar. Sensors 20, 8 (2020), 1–17.
[183]
Wei Zeng, Cong Wang, and Qinghui Wang. 2018. Hand gesture recognition using leap motion via deterministic learning. Multimedia Tools Appl. 77, 21 (November2018), 28185–28206.
[184]
Zhengxin Zeng, Moeness G. Amin, and Tao Shan. 2020. Arm motion classification using time-series analysis of the spectrogram frequency envelopes. Remote Sens. 12, 3 (2020), 1–20.
[185]
Z. Zeng, M. G. Amin, and T. Shan. 2020. Automatic arm motion recognition based on radar micro-doppler signature envelopes. IEEE Sens. J. 20, 22 (November2020), 13523–13532.
[186]
Shumin Zhai, Per Ola Kristensson, Caroline Appert, Tue Haste Andersen, and Xiang Cao. 2012. Foundational issues in touch-surface stroke gesture design—An integrative review. Found. Trends Hum. Comput. Interact. 5, 2 (2012), 97–205.
[187]
Bo Zhang, Lei Zhang, Mojun Wu, and Yan Wang. 2021. Dynamic gesture recognition based on RF sensor and AE-LSTM neural network. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’21). 1–5.
[188]
G. Zhang, S. Lan, K. Zhang, and L. Ye. 2020. Temporal-range-doppler features interpretation and recognition of hand gestures using mmW FMCW radar sensors. In Proceedings of the 14th European Conference on Antennas and Propagation (EuCAP’20). 1–4.
[189]
G. Zhang, K. Zhang, Y. Yun, G. Lu, and S. Lan. 2019. Implementation of C4.5 decision tree in human gesture recognition based on doppler radars. In Proceedings of the International Symposium on Antennas and Propagation (ISAP’19). 1–3.
[190]
J. Zhang and Z. Shi. 2017. Deformable deep convolutional generative adversarial network in microwave based hand gesture recognition system. In Proceedings of the 9th International Conference on Wireless Communications and Signal Processing (WCSP’17). 1–6. ISSN: 2472-7628.
[191]
Jiajun Zhang, Jinkun Tao, and Zhiguo Shi. 2019. Doppler-radar based hand gesture recognition system using convolutional neural networks. In Communications, Signal Processing, and Systems, Qilian Liang, Jiasong Mu, Min Jia, Wei Wang, Xuhong Feng, and Baoju Zhang (Eds.), Lecture Notes in Electrical Engineering, Vol. 463. Springer Singapore, Singapore, 1096–1113.
[192]
K. Zhang, Z. Yu, D. Zhang, Z. Wang, and B. Guo. 2020. RaCon: A gesture recognition approach via doppler radar for intelligent human-robot interaction. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops’20). 1–6.
[193]
S. Zhang, G. Li, M. Ritchie, F. Fioranelli, and H. Griffiths. 2016. Dynamic hand gesture classification based on radar micro-doppler signatures. In Proceedings of the CIE International Conference on Radar (RADAR’16). 1–4.
[194]
X. zhang, Q. Wu, and D. Zhao. 2018. Dynamic hand gesture recognition using FMCW radar sensor for driving assistance. In Proceedings of the 10th International Conference on Wireless Communications and Signal Processing (WCSP’18). 1–6. ISSN: 2472-7628.
[195]
Zhenyuan Zhang, Zengshan Tian, Zhou Mu, and Yi Liu. 2018. Application of FMCW radar for dynamic continuous hand gesture recognition. In Proceedings of the 11th EAI International Conference on Mobile Multimedia Communications (MOBIMEDIA’18). Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, Brussels, BEL, 298–303.
[196]
Z. Zhang, Z. Tian, Y. Zhang, M. Zhou, and B. Wang. 2019. u-DeepHand: FMCW radar-based unsupervised hand gesture feature learning using deep convolutional auto-encoder network. IEEE Sens. J. 19, 16 (August2019), 6811–6821.
[197]
Z. Zhang, Z. Tian, and M. Zhou. 2018. Latern: Dynamic continuous hand gesture recognition using FMCW radar sensor. IEEE Sens. J. 18, 8 (April2018), 3278–3289.
[198]
Z. Zhang, Z. Tian, and M. Zhou. 2019. SmartFinger: A finger-sensing system for mobile interaction via MIMO FMCW radar. In Proceedings of the IEEE Globecom Workshops (GC Wkshps’19). 1–5.
[199]
Z. Zhang, Z. Tian, M. Zhou, W. Nie, and Z. Li. 2018. Riddle: Real-time interacting with hand description via millimeter-wave sensor. In Proceedings of the IEEE International Conference on Communications (ICC’18). 1–6.
[200]
Z. Zhao, Y. Wang, M. Zhou, X. Yang, and L. Xie. 2019. Interference suppression based gesture recognition method with FMCW radar. In Proceedings of the 11th International Conference on Wireless Communications and Signal Processing (WCSP’19). 1–6. ISSN: 2472-7628.
[201]
Zhi Zhou, Zongjie Cao, and Yiming Pi. 2018. Dynamic gesture recognition with a terahertz radar based on range profile sequences and doppler signatures. Sensors 18, 1 (2018), 1–15.
[202]
Shangyue Zhu, Junhong Xu, Hanqing Guo, Qiwei Liu, Shaoen Wu, and Honggang Wang. 2018. Indoor human activity recognition based on ambient radar with signal processing and machine learning. In Proceedings of the IEEE International Conference on Communications (ICC’18). 1–6.

Cited By

View all
  • (2025)Gesture Recognition with Residual LSTM Attention Using Millimeter-Wave RadarSensors10.3390/s2502046925:2(469)Online publication date: 15-Jan-2025
  • (2024)Beyond Radar Waves: The First Workshop on Radar-Based Human-Computer InteractionCompanion Proceedings of the 16th ACM SIGCHI Symposium on Engineering Interactive Computing Systems10.1145/3660515.3662836(97-102)Online publication date: 24-Jun-2024
  • (2024)Brave New GES World: A Systematic Literature Review of Gestures and Referents in Gesture Elicitation StudiesACM Computing Surveys10.1145/363645856:5(1-55)Online publication date: 12-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Interactive Intelligent Systems
ACM Transactions on Interactive Intelligent Systems  Volume 13, Issue 3
September 2023
263 pages
ISSN:2160-6455
EISSN:2160-6463
DOI:10.1145/3623489
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 September 2023
Online AM: 31 March 2023
Accepted: 10 March 2023
Revised: 22 November 2022
Received: 20 June 2022
Published in TIIS Volume 13, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Dimension reduction
  2. hand gesture recognition
  3. radar-based interaction

Qualifiers

  • Research-article

Funding Sources

  • Wallonie-Bruxelles International (WBI)
  • RadarSense
  • Fonds de la Recherche Scientifique (FNRS)

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)388
  • Downloads (Last 6 weeks)37
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Gesture Recognition with Residual LSTM Attention Using Millimeter-Wave RadarSensors10.3390/s2502046925:2(469)Online publication date: 15-Jan-2025
  • (2024)Beyond Radar Waves: The First Workshop on Radar-Based Human-Computer InteractionCompanion Proceedings of the 16th ACM SIGCHI Symposium on Engineering Interactive Computing Systems10.1145/3660515.3662836(97-102)Online publication date: 24-Jun-2024
  • (2024)Brave New GES World: A Systematic Literature Review of Gestures and Referents in Gesture Elicitation StudiesACM Computing Surveys10.1145/363645856:5(1-55)Online publication date: 12-Jan-2024
  • (2024)Multifunctional Sensing Platform Based on Single Antenna for Noncontact Human–Machine Interaction and Environment SensingIEEE Transactions on Antennas and Propagation10.1109/TAP.2024.345242772:10(7664-7679)Online publication date: Oct-2024
  • (2024)Trends in the detection and interpretation of human movements and mime-gesture2024 International Conference on Development and Application Systems (DAS)10.1109/DAS61944.2024.10541136(105-110)Online publication date: 23-May-2024
  • (2024)Analysis of User-Defined Radar-Based Hand Gestures Sensed Through Multiple MaterialsIEEE Access10.1109/ACCESS.2024.336666712(27895-27917)Online publication date: 2024
  • (2023)FORTE: Few Samples for Recognizing Hand Gestures with a Smartphone-attached RadarProceedings of the ACM on Human-Computer Interaction10.1145/35932317:EICS(1-25)Online publication date: 19-Jun-2023

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media