Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Detection of Hateful Social Media Content for Arabic Language

Published: 22 September 2023 Publication History

Abstract

Social media is a common medium for expression of views, discussion, sharing of content, and promotion of products and ideas. These views are either polite or obscene. The growth of hate speech is one of the negative aspects of the medium and its emergence poses risk factors for society at various levels. Although there are rules and laws for these platforms, they cannot oversee and control all types of content. Thus, there is an urgent need to develop modern algorithms to automatically detect hateful content on social media. Arab society is not isolated from the world, and the usage of social media by its members has highlighted the importance of automated systems that help build an electronic society free of hate and aggression. This article aims to detect hate speech based on Arabic context over the Twitter platform by proposing different novel deep learning architectures in order to provide a thorough analytical study. Also, a comparative study is presented with a different well-known machine learning algorithm, as well as other state-of-the-art algorithms from the literature to be used as a beacon for interested researchers. These models have been applied to the Arabic tweets dataset, which included 15K tweets and 14 features. After training these models, the results obtained for the top two models included an improved bidirectional long short-term memory with an accuracy of 92.20% and a macro F1-score of 92% and a modified convolutional neural network with an accuracy of 92.10% and a macro F1-score of 91%. The results also showed the superiority of the performance of the deep learning models over other models in terms of accuracy.

References

[1]
P. Astuti. 2016. Freedom of expression through social media and the political participation of young voters: A case study of elections in Jakarta, Indonesia. SOCRATES An Int. Multi-lingual, Multi-disciplinary, Ref. (peer-reviewed), Index. Sch. J. 4, 4 (2016), 74–88.
[2]
A. Băncău-Burcea. 2017. Social media and freedom of thought. Proceedings of the Research Association for Interdisciplinary Studies (RAIS) Conference. Montgomery County Campus, Rockville, MD, Available at Social Science Research Network (SSRN), 124–130. DOI:
[3]
S. Lee. 2017. Media freedom and social capital. J. Media Econ. 30, 1 (2017), 3–18. DOI:
[4]
R. Steppe, O. Wetenschappelijke, B. Van, J. Wouters En, M. Ann, and S. Cloots. 2014. The freedom of speech on social networking services Do we need protection against our own expressions?. Jura Falconis Jg 50, 3 (2014), 2014–2015.
[5]
S. Zaib, M. Asif, and M. Arooj. 2019. Development of aggression detection technique in social media. Int. J. Inf. Technol. Comput. Sci. 11, 5 (2019), 40–46. DOI:
[6]
S. Si, A. Datta, S. Banerjee, and S. K. Naskar. 2019. Aggression detection on multilingual social media text. 2019 10th Int. Conf. Comput. Commun. Netw. Technol. (ICCCNT’19), Kanpur, 1–5. DOI:
[7]
K. Chick. 2020. Harmful comments on social media. 2020, [Online]. Retrieved April 26, 2023 from http://data.parliament.uk/DepositedPapers/Files/DEP2013-
[8]
C. Blaya. 2019. Cyberhate: A review and content analysis of intervention strategies. Aggress. Violent Behav. 45 (2019), 163–172. DOI:
[9]
A. Brown. 2017. What is hate speech ? Part 1 : the myth of hate. Law and Philos 36, 4 (2017), 419–468. DOI:
[10]
W. Warner and J. Hirschberg. 2012. Detecting hate speech on the World Wide Web. Proc. of the Second Workshop on Language in Social Media, Montréal, Canada, 19–26.
[11]
E. Barendt. 2019. What is the harm of hate speech?. Ethical Theory Moral Pract. 22, 3 (2019), 539–553. DOI:
[12]
D. Mouheb, R. Ismail, S. Al Qaraghuli, Z. Al Aghbari, and I. Kamel. 2019. Detection of offensive messages in Arabic social media communications. Proc. 2018 13th Int. Conf. Innov. Inf. Technol. (IIT’18), Al Ain, 24–29. DOI:
[13]
N. Alkiviadou. 2019. Hate speech on social media networks: Towards a regulatory framework?. Inf. Commun. Technol. Law. 28, 1 (2019), 19–35. DOI:
[14]
H. Watanabe, M. Bouazizi, and T. Ohtsuki. 2018. Hate speech on Twitter: A pragmatic approach to collect hateful and offensive expressions and perform hate speech detection. IEEE Access 6, c (2018), 13825–13835. DOI:
[15]
M. Schmitz, B. Kobow, and H. B. Schmid. 2013. The background of social reality: Selected contributions from the inaugural meeting of ENSO. Backgr. Soc. Real. Sel. Contrib. from Inaug. Meet. ENSO, June, 1–251, 2013. DOI:
[16]
E. Abu-Taieh, A. Alfaries, S. Al-Otaibi, and G. Aldehim. 2019. Cyber security crime and punishment. Natl. Secur (2019), 126–140. DOI:
[17]
A. F. Fehri. 1993. Issues in the Structure of Arabic Clauses and Words. Springer, Dordrecht, 316. DOI:
[18]
Z. Waseem and D. Hovy. 2016. Hateful symbols or hateful people? Predictive features for hate speech detection on Twitter. Proc. of the NAACL Student Research Workshop (2016), California, 88–93. DOI:
[19]
R. Fidiyani, D. Sulistianingsih, and P. Pujiono. 2017. Law and ethics in social media communication. J. Din. Huk. 17, 3 (2017), 258. DOI:
[20]
A. Al-Hassan and H. Al-Dossari. 2019. Detection of hate speech in social networks: A survey on multilingual corpus. Computer Science & Information Technology(CS & IT) (2019), 83–100. DOI:
[21]
A. H. Orabi, P. Buddhitha, M. H. Orabi, and D. Inkpen. 1975. Deep learning for depression detection of Twitter users ahmed. Gift. Child Q. 19, 2 (1975), 175–180. DOI:
[22]
S. Laksshman, R. R. Bhat, V. Viswanath, and X. Li. 2017. DeepBipolar: Identifying genomic mutations for bipolar disorder via deep learning. Hum. Mutat. 38, 9 (2017), 1217–1224. DOI:
[23]
J. Kim, J. Lee, E. Park, and J. Han. 2020. A deep learning model for detecting mental illness from user content on social media. Sci. Rep. 10, 1 (2020), 1–6. DOI:
[24]
M. K. Hayat, A. Daud, A. A. Alshdadi, A. Banjar, R. A. Abbasi, Y. Bao, and H. Dawood. 2019. Towards deep learning prospects: Insights for social media analytics. IEEE Access 7, (May 2019), 36958–36979. DOI:
[25]
M. Y. Anis. 2017. Hate speech in Arabic Language. Int. Conf. MEDIA Stud, Universiti Utara Malaysia, Sintok.
[26]
N. D. Gitari, Z. Zuping, H. Damien, and J. Long. 2015. A lexicon-based approach for hate speech detection. Int. J. Multimed. Ubiquitous Eng. 10, 4 (2015), 215–230. DOI:
[27]
N. Chetty and S. Alathur. 2018. Hate speech review in the context of online social networks. Aggress. Violent Behav. (2018), 108–118. DOI:
[28]
I. Guellil, F. Azouaou, and A. Valitutti. 2019. English vs Arabic sentiment analysis: A survey presenting 100 work studies, resources and tools. Proc. IEEE/ACS Int. Conf. Comput. Syst. Appl. (AICCSA’19), Abu Dhabi, 1–8. DOI:
[29]
G. A. Buntoro. 2016. Analisis sentimen hatespeech pada Twitter Dengan metode naïve Bayes classifier dan support vector machine. J. Chem. Inf. Model. 53, 9 (2016), 1689–1699. DOI:
[30]
S. Malmasi and M. Zampieri. 2017. Detecting hate speech in social media. Int. Conf. Recent Adv. Nat. Lang. Process. (RANL’017), INCOMA Ltd., Varna, 467–472. DOI:
[31]
R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin. 2008. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res. 9, February 2014 (2008), 1871–1874. DOI:
[32]
R. Magu, K. Joshi, and J. Luo. 2017. Detecting the hate code on social media. Proc. 11th Int. Conf. Web Soc. Media (ICWSM’17), Montreal, Quebec, 608–611.
[33]
T. Davidson, D. Warmsley, M. Macy, and I. Weber. 2017. Automated hate speech detection and the problem of offensive language. Proc. 11th Int. Conf. Web Soc. Media (ICWSM’17), Montreal, Quebec, 512–515.
[34]
N. D. T. Ruwandika and A. R. Weerasinghe. 2019. Identification of hate speech in social media. 18th Int. Conf. Adv. ICT Emerg. Reg. (ICTer’18). 273–278. DOI:
[35]
F. Del Vigna, A. Cimino, F. Dell'Orletta, M. Petrocchi, and M. Tesconi. 2017. Hate me, hate me not: Hate speech detection on Facebook. CEUR Workshop Proc. 1816 (2017), 86–95.
[36]
G. K. Pitsilis, H. Ramampiaro, and H. Langseth. 2018. Effective hate-speech detection in Twitter data using recurrent neural networks. Appl. Intell. 48, 12 (2018), 4730–4742. DOI:
[37]
L. Gao and R. Huang. 2017. Detecting online hate speech using context aware models. Int. Conf. Recent Adv. Nat. Lang. Process. (RANLP’17), Varna, Bulgaria, INCOMA Ltd, 260–266. DOI:
[38]
H. T.-T. Do, H. D. Huynh, K. Van Nguyen, N. L.-T. Nguyen, and A. G.-T. Nguyen. 2019. Hate speech detection on Vietnamese social media text using the bidirectional-LSTM model. arXiv Prepr. arXiv1911.03644, 4–7, 2019, [Online]. Retrieved April 26, 2023 from http://arxiv.org/abs/1911.03648
[39]
S. Hochreiter. 2016. Long short-term memory. Neural Comput December 1997, 9, 8 (2016), 1735–1780. DOI:
[40]
G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer. 2016. Neural Architectures for Named Entity Recognition. Proc. of the 2016 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, California, 260–270.
[41]
J. Pennington, R. Socher, and C. D. Manning. 2014. GloVe : Global Vectors for Word Representation. Proc. of the 2014 Conf. on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Doha, 1532–1543. DOI:https://aclanthology.org/D14-1162
[42]
B. Gambäck and U. K. Sikdar. 2017. Using convolutional neural networks to classify hate-speech. Proc. of the 1st Workshop on Abusive Language Online. January (2017), Canada. Association for Computational Linguistics, 85–90. DOI:
[43]
T. Mikolov, G. Corrado, K. Chen, and J. Dean. 2013. Efficient estimation of word representations in Vector Space. Proc. of Workshop at International Conference on Learning Representations (ICLR), May (2013), Scottsdale, AZ, 1–12.
[44]
S. T. Aroyehun and A. Gelbukh. 2018. Aggression detection in social media: Using deep neural networks, data augmentation, and pseudo labeling. Proc. 1st Work. Trolling, Aggress. Cyberbullying (TRAC-2018), New Mexico, USA, 90–97. Retrieved April 26, 2023 from https://aclanthology.org/W18-4411
[45]
Z. Zhang, D. Robinson, and J. Tepper. 2018. Detecting hate speech on Twitter using a convolution-GRU based deep neural network. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) Vol. 10843, April (2018), 745–760. DOI:
[46]
P. Badjatiya, S. Gupta, M. Gupta, and V. Varma. 2019. Deep learning for hate speech detection in tweets. 26th Int. World Wide Web Conf. (WWW’17), Vol. 2, Companion, Venice, 759–760. DOI:
[47]
E. A. Abozinadah, A. V. Mbaziira, and J. H. J. Jones. 2015. Detection of abusive accounts with Arabic tweets. Int. J. Knowl. Eng, Chicago, Ilinois USA 1, 2 (2015), 113–119. DOI:
[48]
A. Alakrot, L. Murray, and N. S. Nikolov. 2018. Towards accurate detection of offensive language in online communication in Arabic. Procedia Comput. Sci. 142, no. January 2019, 315–320. DOI:
[49]
N. Albadi, M. Kurdi, and S. Mishra. 2018. Are They Our Brothers ? Analysis and detection of religious hate speech in the Arabic twittersphere. 2018 IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Min. 69–76. DOI:
[50]
A. B. Soliman, K. Eissa, and S. R. El-beltagy. 2017. ScienceDirect ScienceDirect AraVec : A set of Arabic Word Embedding Models for Use in Arabic NLP. Procedia Comput. Sci. 117 (2017), 256–265. DOI:
[51]
H. Mohaouchane, A. Mourhir, and N. S. Nikolov. 2019. Detecting offensive language on arabic social media using deep learning. 2019 6th International Conference on Social Networks Analysis, Management and Security (SNAMS), Granada, Spain, 466–471. DOI:
[52]
B. Haddad, Z. Orabe, A. Al-Abood, and N. Ghneim. 2020. Arabic offensive language detection with attention-based deep neural networks. Proc. 4th Work. Open-Source Arab. Corpora Process. Tools, with a Shar. Task Offensive Lang. Detect., (May 2020), Marseille, France, 76–81, [Online]. Retrieved April 26, 2023 from https://www.aclweb.org/anthology/2020.osact-1.12
[53]
I. Aljarah, M. Habib, N. Hijazi, H. Faris, R. Qaddoura, B. Hammo, M. Abushariah, and M. Alfawareh. 2020. Intelligent detection of hate speech in Arabic social network: A machine learning approach. J. Inf. Sci. 47, 4 (2020), 483–501. DOI:
[54]
A. Aref, R. Husni Al Mahmoud, K. Taha, and M. Al-Sharif. 2020. Hate speech detection of arabic shorttext. 9th Int. Conf. on Info. Techno. Conv. and Serv. (ITCSE 2020) 10 (2020), 81–94. DOI:
[55]
A. Abuzayed and T. Elsayed. 2020. Quick and simple approach for detecting hate speech in Arabic tweets. Proc. 4th Work. Open-Source Arab. Corpora Process. Tools, with a Shar. Task Offensive Lang. Detect., (May 2020), Marseille, France. European, 109–114. [Online]. Retrieved April 26, 2023 from https://www.aclweb.org/anthology/2020.osact-1.18
[56]
M. van Assen and L. J. Cornelissen. 2020. Artificial intelligence: From scientific curiosity to clinical precocity?. JACC Cardiovasc. Imaging 13, 5 (2020), 1172–1174. DOI:
[57]
M. Raj and R. Seamans. 2019. Primer on artificial intelligence and robotics. J. Organ. Des. 8, 1 (2019), 1–14. DOI:
[58]
R. Kashyap. 2019. Artificial Intelligence Systems in Aviation. In T. Shmelova and Yu. Sikirda (Eds.). Cases on Modern Computer Systems in Aviation, IGI Global1, 26. DOI:
[59]
A. P. Saraf, K. Chan, M. Popish, J. Browder, and J. Schade. 2020. Explainable artificial intelligence for aviation safety applications. 1–9. DOI:
[60]
S. Schiffer, A. Ferrein, and G. Lakemeyer. 2012. Caesar: An intelligent domestic service robot. Intell. Serv. Robot. 5, 4 (2012), 259–273. DOI:
[61]
A. Kannan, K. Kurach, S. Ravi, T. Kaufmann, A. Tomkins, B. Miklos, G. Corrado, L. Lukacs, M. Ganea, P. Young, and V. Ramavajjala. 2016. Smart Reply: Automated Response Suggestion for Email. Proc. of the 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. 955–964. DOI:
[62]
E. D. Salin and P. H. Winston. 1992. Machine learning and artificial intelligence an introduction. Analytical Chemistry 64, 1 (1992), 49A–60A. DOI:
[63]
A. Menezes. 2022. Better contextual translation using machine learning. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 2499 (2022), 124–134. DOI:
[64]
Y. Chandra and A. Jana. 2020. Sentiment analysis using machine learning and deep learning. 2020 7th Int. Conf. Comput. Sustain. Glob. Dev. (2020), 5–8. DOI:
[65]
D. Shubham, P. Mithil, M. Shobharani, and S. Sumathy. 2017. Aspect level sentiment analysis using machine learning. IOP Conf. Ser. Mater. Sci. Eng. 263, 4 (2017). DOI:
[66]
L. Di Persio and O. Honchar. 2018. Multitask machine learning for financial forecasting. Int. J. Circuits, Syst. Signal Process. 12, (May 2018), 444–451.
[67]
M. Mitra. 2019. Editorial on advances in machine learning and robotics. Am. Res. J. Electron. Commun. Eng. 1, 1 (2019). DOI:
[68]
J. A. M. Sidey-Gibbons and C. J. Sidey-Gibbons. 2019. Machine learning in medicine: A practical introduction. BMC Med. Res. Methodol. 19, 1 (2019), 1–18. DOI:
[69]
P. Burnap and M. Williams. 2014. Hate speech, machine classification and statistical modelling of information flows on Twitter: Interpretation and communication for policy decision making. Internet, Policy Polit. (2014), 1–18. DOI:
[70]
T. Hua, F. Chen, L. Zhao, C. T. Lu, and N. Ramakrishnan. 2013. STED: Semi-supervised targeted-interest event detection in Twitter. Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. Part F1288, July 2015 (2013), 1466–1469. DOI:
[71]
R. Pandarachalil, S. Sendhilkumar, and G. S. Mahalakshmi. 2015. Twitter sentiment analysis for large-scale data: An unsupervised approach. Cognit. Comput. 7, 2 (2015), 254–262. DOI:
[72]
D. S. Kumar. 2020. Supervised and Semi Supervised Machine Learning Clustering, January, 2020.
[73]
X. Haijun, P. Fang, W. Ling, and L. Hongwei. 2007. Ad hoc-based feature selection and support vector machine classifier for intrusion detection. Proc. 2007 IEEE Int. Conf. Grey Syst. Intell. Serv. GSIS 2007 (2007), Nanjing, 1117–1121. DOI:
[74]
N. Satyanarayana, C. Ramalingaswamy, and Y. Ramadevi. 2014. Survey of classification techniques in data mining. IJISET -International J. Innov. Sci. Eng. Technol. 1, 9 (2014), 65–71. [Online]. Available: www.ijiset.com
[75]
M. D. Twa, S. Parthasarathy, C. Roberts, A. M. Mahmoud, T. W. Raasch, and M. A. Bullimore. 2005. Automated decision tree classification of corneal shape, Optom. Vis. Sci. 82, 12 (2005), 1038–1046. DOI:
[76]
R. Entezari-Maleki, A. Rezaei, and B. Minaei-Bidgoli. 2012. Cultural modeling for behavior analysis and prediction (2012), 91–102. DOI:
[77]
Reza Entezari-maleki, A. Rezaei, and B. Minaei-bidgoli. 2009. Comparison of classification methods based on the type of attributes and sample size. J. Converg. Inf. Technol JCIT 4 (2009), 94–102. DOI:
[78]
P. P. Shinde and S. Shah. 2018. A review of machine learning and deep learning applications. Proc. 2018 4th Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2018 (2018), Pune, India, 1–6. DOI:
[79]
I. Davidson and S. S. Ravi. 2005. Agglomerative hierarchical clustering with constraints: Theoretical and empirical results. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 3721 (2005), 59–70. DOI:
[80]
Y. Ma and Y. Hao. 2020. Antenna classification using Gaussian mixture models (GMM) and machine learning (2020). IEEE Open Journal of Antennas and Propagation 1 (2020), 320–328. DOI:
[81]
S. Anand, S. Mittal, O. Tuzel, and P. Meer. 2014. Semi-supervised kernel mean shift clustering. IEEE Trans. Pattern Anal. Mach. Intell. 36, 6 (2014), 1201–1215. DOI:
[82]
Y. Lecun, Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436–444. DOI:
[83]
M. Raghu and E. Schmidt. 2020. A Survey of Deep Learning for Scientific Discovery. 1–48. [Online]. Retrieved April 26, 2023 from http://arxiv.org/abs/2003.11755
[84]
A. Voulodimos, N. Doulamis, G. Bebis, and T. Stathaki. 2018. Recent developments in deep learning for engineering applications. Comput. Intell. Neurosci. 2018 (2018), 1–2. DOI:
[85]
F. Liu, S. Xue, J. Wu, C. Zhou, W. Hu, C. Paris, S. Nepal, J. Yang, and P. S Yu. 2020. Deep learning for community detection: Progress, challenges and opportunities. 29th Int. Joint Conf. on AI (IJCAI 20), Survey Track, 4981–49872. DOI:
[86]
D. Ravi, C. Wong, F. Deligianni, M. Berthelot, J. AndreuPerez, B. Lo, and G. Z. Yang. 2017. Deep learning for health informatics. IEEE J. Biomed. Heal. Informatics 21, 1 (2017), 4–21. DOI:
[87]
I. Sutskever, J. Martens, and G. Hinton. 2011. Generating text with recurrent neural networks. Proc. 28th Int. Conf. Mach. Learn. ICML 2011, Bellevue, Washington, USA, 1017–1024.
[88]
A. Mosavi, S. Ardabili, and A. R. Várkonyi-Kóczy. 2020. List of deep learning models. Lect. Notes Networks Syst. 101 (2020), 202–214. DOI:
[89]
Y. Yao and Z. Huang. 2016. Bi-directional LSTM recurrent neural network for Chinese word segmentation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) Vol. 9950 (2016), 345–353. DOI:
[90]
Y. Gao and D. Glowacka. 2016. Deep gate recurrent neural network. J. Mach. Learn. Res. 63 (2016), 350–365. DOI:
[91]
M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman. 2016. Reading text in the wild with convolutional neural networks. Int. J. Comput. Vis. 116, 1 (2016), 1–20. DOI:
[92]
U. Kamath, J. Liu, and J. Whitaker. 2019. Convolutional Neural Networks in Deep Learning for NLP and Speech Recognition. Springer Int. Publishing, 263–314,. DOI:
[93]
L. Xie, G. Liu, and H. Lian. 2019. Deep variational auto-encoder for text classification. Proc. 2019 IEEE Int. Conf. Ind. Cyber Phys. Syst. ICPS 2019, Taipei, Taiwan, 737–742. DOI:
[94]
H. Mulki, H. Haddad, C. Bechikh Ali, and H. Alshabani. 2019. L-HSAB: A levantine Twitter dataset for hate speech and abusive language. Proc. of the Third Workshop on Abusive Lang, Online, Florence, Italy, 111–118. DOI:
[95]
R. Al-Ibrahim and R. M. Duwairi. 2020. Neural machine translation from Jordanian dialect to modern standard Arabic. 2020 IEEE 11th Int. Conf. Inf. Commun. Syst. ICICS 2020, Irbid, Jordan, 173–178. DOI:
[96]
J. Dem. 2006. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006), 1–30. DOI:
[97]
J. Alcalá-Fdez, L. Sánchez, S. García, M. J. del Jesus, S. Ventura, J. M. Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C. Fernández, and F. Herrera. 2009. KEEL: A software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 13, 3 (2009), 307–318. DOI:

Cited By

View all
  • (2024)BIDIRECTIONAL LONG SHORT-TERM MEMORY IN HATE SPEECH DETECTION PROBLEM ON NETWORKSBULLETIN Series of Physics & Mathematical Sciences10.51889/2959-5894.2024.87.3.01087:3Online publication date: Sep-2024
  • (2024)Hate speech detection with ADHAR: a multi-dialectal hate speech corpus in ArabicFrontiers in Artificial Intelligence10.3389/frai.2024.13914727Online publication date: 30-May-2024
  • (2024)SMOTE for enhancing Tunisian Hate Speech detection on social media with machine learningInternational Journal of Hybrid Intelligent Systems10.3233/HIS-24001220:4(355-368)Online publication date: 1-Nov-2024
  • Show More Cited By

Index Terms

  1. Detection of Hateful Social Media Content for Arabic Language

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Asian and Low-Resource Language Information Processing
    ACM Transactions on Asian and Low-Resource Language Information Processing  Volume 22, Issue 9
    September 2023
    226 pages
    ISSN:2375-4699
    EISSN:2375-4702
    DOI:10.1145/3625383
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 September 2023
    Online AM: 17 April 2023
    Accepted: 08 April 2023
    Revised: 07 February 2023
    Received: 23 August 2022
    Published in TALLIP Volume 22, Issue 9

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Hate speech
    2. Arabic language
    3. deep learning
    4. classification
    5. machine learning
    6. Arabic tweets

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)161
    • Downloads (Last 6 weeks)20
    Reflects downloads up to 22 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)BIDIRECTIONAL LONG SHORT-TERM MEMORY IN HATE SPEECH DETECTION PROBLEM ON NETWORKSBULLETIN Series of Physics & Mathematical Sciences10.51889/2959-5894.2024.87.3.01087:3Online publication date: Sep-2024
    • (2024)Hate speech detection with ADHAR: a multi-dialectal hate speech corpus in ArabicFrontiers in Artificial Intelligence10.3389/frai.2024.13914727Online publication date: 30-May-2024
    • (2024)SMOTE for enhancing Tunisian Hate Speech detection on social media with machine learningInternational Journal of Hybrid Intelligent Systems10.3233/HIS-24001220:4(355-368)Online publication date: 1-Nov-2024
    • (2024)Revealing Online Threats Through Leveraging RNN Models for Advanced Cyberbullying Detection2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)10.1109/IRASET60544.2024.10548957(1-7)Online publication date: 16-May-2024
    • (2024)Improving Hate Speech Detection Using Double-Layers Hybrid CNN-RNN Model on Imbalanced DatasetIEEE Access10.1109/ACCESS.2024.348743312(159660-159668)Online publication date: 2024
    • (2024)Hate Speech and Target Community Detection in Nastaliq Urdu Using Transfer Learning TechniquesIEEE Access10.1109/ACCESS.2024.344418812(116875-116890)Online publication date: 2024
    • (2024)Offensive Language Detection on Telugu LanguageComputational Intelligence in Data Science10.1007/978-3-031-69982-5_11(144-155)Online publication date: 30-Aug-2024

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media