Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3597066.3597078acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article
Open access

Computing Logarithmic Parts by Evaluation Homomorphisms✱

Published: 24 July 2023 Publication History

Abstract

We present two evaluation-based algorithms: one for computing logarithmic parts and the other for determining complete logarithmic parts in transcendental function integration. Empirical results illustrate that the new algorithms are markedly faster than those based respectively on resultants, the contraction of ideals, subresultants and Gröbner bases. They may be used to accelerate Risch’s algorithm for transcendental integrands, and help us to compute elementary integrals over logarithmic towers efficiently.

References

[1]
Manuel Bronstein. 2005. Symbolic Integration I: Transcendental Functions (second ed.). Springer, Berlin Heidelberg New York.
[2]
Günter Czichowski. 1995. A note on Gröbner bases and integration of rational functions. Journal of Symbolic Computation 20 (1995), 163–167.
[3]
James H. Davenport. 1986. The Risch differential equation problem. SIAM J. Comput. 15 (1986), 903–918.
[4]
Hao Du, Jing Guo, Ziming Li, and Elaine Wong. 2020. An additive decomposition in logarithmic towers and beyond. In Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation (ISSAC’20). Lille, France, ACM, New York, 146–153.
[5]
Mark J. Encarnación. 1995. Computing GCDs of polynomials over algebraic number fields. Journal of Symbolic Computation 20 (1995), 299–313.
[6]
Keith O. Geddes, Stephen R. Czapor, and George Labahn. 1992. Algorithms for Computer Algebra. Kluwer Academic Publishers.
[7]
Jing Guo. 2021. Additive Decompositions in Primitive Towers with Applications. Ph.D. Dissertation. Chinese Academy of Sciences, Beijing, China (in Chinese).
[8]
Seyed M. M. Javadi and Michael Monagan. 2009. In-place arithmetic for univariate polynomials over an algebraic number field. In Proceedings of the Joint Conference of ASCM 2009 and MACIS 2009(COE Lecture Note, 22). Kyushu University, 330–341.
[9]
Daniel Lazard and Renaud Rioboo. 1990. Integration of rational functions: Rational computation of the logarithmic part. Journal of Symbolic Computation 9 (1990), 113–115.
[10]
Thomas Mulders. 1997. A note on subresultants and the Lazard/Rioboo/Trager formula in rational function integration. Journal of Symbolic Computation 24 (1997), 45–50.
[11]
Clemens G. Raab. 2012. Definite Integration in Differential Fields. Ph.D. Dissertation. RISC-Linz, Johannes Kepler University, Linz, Austria.
[12]
Clemens G. Raab. 2012. Using Gröbner bases for finding the logarithmic part of the integral of transcendental functions. Journal of Symbolic Computation 47 (2012), 1290–1296.
[13]
Clemens G. Raab and Michael F. Singer. 2022. Integration in Finite Terms: Fundamental Sources. Text & Monographs in Symbolic Computation, Springer.
[14]
Robert H. Risch. 1969. The problem of integration in finite terms. Trans. Amer. Math. Soc. 139 (1969), 167–189.
[15]
Robert H. Risch. 1970. The solution of integration in finite terms. Bull. Amer. Math. Soc. 76 (1970), 605–608.
[16]
Joseph F. Ritt. 1948. Integration in Finite Terms. Liouville’s Theory of Elementary Methods. Columbia University Press, New York.
[17]
Maxwell Rosenlicht. 1968. Integration in finite terms. Amer. Math. Monthly 24 (1968), 153–161.
[18]
Maxwell Rosenlicht. 1972. Liouville’s theorem on functions with elementary integrals. Pacific J. Math. 79 (1972), 963–972.
[19]
Michael Rothstein. 1976. Aspects of Symbolic Integration and Simplification of Exponential and Primitive Functions. Ph.D. Dissertation. University of Wisconsin, Madison, the United States.
[20]
Michael Rothstein. 1977. A new algorithm for the integration of exponential and logarithmic functions. In Proceedings of the 1977 MACSYMA Users Conference. 263–274.
[21]
Barry M. Trager. 1976. Algebraic factoring and rational function integration. In Proceedings of SYMSAC’ 76. ACM, New York, 219–226.
[22]
Mark van Hoeij and Michael Monagan. 2002. A modular GCD algorithm over number fields presented with multiple field extensions. In Proceedings of the 27th International Symposium on Symbolic and Algebraic Computation (ISSAC’ 02). Lille, France, ACM, New York, 109–116.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ISSAC '23: Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation
July 2023
567 pages
ISBN:9798400700392
DOI:10.1145/3597066
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 July 2023

Check for updates

Author Tags

  1. Additive decomposition
  2. Elementary integral
  3. Evaluation homomorphism
  4. Logarithmic part
  5. Symbolic integration

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

ISSAC 2023

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 113
    Total Downloads
  • Downloads (Last 12 months)107
  • Downloads (Last 6 weeks)14
Reflects downloads up to 18 Aug 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media