Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3604078.3604169acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicdipConference Proceedingsconference-collections
research-article

Video Frame Interpolation Based on Lightweight Convolutional Unit and Three-scale Encoder

Published: 26 October 2023 Publication History

Abstract

Video frame interpolation (VFI) achieves temporal super-resolution by synthesizing intermediate frame between two original adjacent frames. This paper proposes a lightweight VFI network based on lightweight convolutional unit and three-scale encoder. We first introduce a three-scale encoding-decoding structure with two-level attention cascades to represent the multi-scale motion information. Then, recurrent convolutional layer (RCL) and residual operation are adopted to design the recurrent residual convolutional unit (RRCU) to refine the three-scale structure. Finally, we propose a lightweight unit by combining the depth separable convolution and RRCU, and introduce the local lightweight idea to reduce the model parameters. Experimental results show that the proposed method achieves a better performance against the state-of-the-art methods with fewer parameters.

References

[1]
Jiang, H., Sun, D., Jampani, V., Yang, M. H., Learned-Miller, E. and Kautz, J., "Super slomo: High quality estimation of multiple intermediate frames for video interpolation," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 9000-9008(2018).
[2]
Xu, X., Pan, J., Zhang, Y. J. and Yang, M. H., “Motion blur kernel estimation via deep learning," IEEE Trans. Image Process. Papers 27(1), 194-205(2018).
[3]
He, J., Yang, G., Liu, X. and Ding, X., “Spatio-temporal saliency-based motion vector refinement for frame rate up-conversion,” ACM Trans. Multim. Comput. Papers 16(2), 1-18(2020).
[4]
Lee, H., Kim, T., Chung, T. Y., Pak, D., Ban, Y. and Lee, S., “AdaCoF: Adaptive collaboration of flows for video frame interpolation," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 5315-5324(2020).
[5]
Niklaus, S. and Liu, F., “Context-aware synthesis for video frame interpolation," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 1701-1710(2018).
[6]
Niklaus, S. and Liu, F., “Softmax splatting for video frame interpolation," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 5436-5445(2020).
[7]
Liu, Z., Yeh, R. A., Tang, X., Liu, Y. and Agarwala, A., “Video frame synthesis using deep voxel flow," Proc. IEEE Int. Conf. Comput. Vis., 4473-4481(2017).
[8]
Park, J., Ko, K., Lee, C. and Kim, C. S., “BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation,” Proc. Eur. Conf. Comput. Vis., 109-125(2020).
[9]
Niklaus, S., Mai, L. and Liu, F., “Video frame interpolation via adaptive convolution," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2270-2279(2017).
[10]
Peleg, T., Szekely, P., Sabo, D. and Sendik, O., “IM-Net for high resolution video frame interpolation," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2393-2402(2019).
[11]
Niklaus, S., Mai, L. and Liu, F., “Video frame interpolation via adaptive separable convolution," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 261-270(2017).
[12]
Bao, W., Lai, W. S., Zhang, X., Gao, Z. and Yang, M. H., “MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement," IEEE Trans. Pattern Anal. Mach. Intell. Papers43(3), 933-948(2021).
[13]
Chi, Z., Nasiri, R. M., Liu, Z., Lu, J., Tang, J. and Plataniotis, K. N., “All at once: Temporally adaptive multi-frame interpolation with advanced motion modeling,” Proc. Eur. Conf. Comput. Vis., 107–123(2020).
[14]
Yuan, L., Chen, Y., Liu, H., Kong, T. and Shi, J., “Zoom-In-To-Check: Boosting video interpolation via instance-level discrimination," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 12175-12183(2019).
[15]
Xue, T., Chen, B., Wu, J., Wei, D. and Freeman, W. T., “Video enhancement with task-oriented flow,” Int. J. Comput. Vis. Papers 127(8), 1106-1125(2019).
[16]
Howard, A. G., Zhu, M., Chen, B., “MobileNets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.
[17]
Chollet, F., “Xception: Deep learning with depthwise separable convolutions," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 1800-1807(2017).
[18]
Ding, X., Huang, P., Zhang, D. and Zhao, X., “Video frame interpolation via local lightweight bidirectional encoding with channel attention cascade," Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 1915-1919(2022).
[19]
Kingma, D. P. and Ba, J., “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
[20]
Baker, S., Roth, S., Scharstein, D., Black, M. J., Lewis, J. P. and Szeliski, R., “A database and evaluation methodology for optical flow," Proc. IEEE Int. Conf. Comput. Vis., 1-8(2007).
[21]
Soomro, K., Zamir, A. and Shah, M., “UCF101: A dataset of 101 human actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402, 2012.
[22]
Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M. and Sorkine-Hornung, A., “A benchmark dataset and evaluation methodology for video object segmentation," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 724-732(2016).
[23]
Kong L., “IFRNet: Intermediate feature refine network for efficient frame interpolation," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 959-1968(2022).
[24]
Li, H., Yuan, Y. and Wang, Q., “Video frame interpolation via residue refinement," Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2613-2617(2020).

Index Terms

  1. Video Frame Interpolation Based on Lightweight Convolutional Unit and Three-scale Encoder

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICDIP '23: Proceedings of the 15th International Conference on Digital Image Processing
    May 2023
    711 pages
    ISBN:9798400708237
    DOI:10.1145/3604078
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 October 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Video frame interpolation
    2. local lightweight
    3. recurrent convolutional layer
    4. three-scale encoder

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    • the Shandong Provincial Natural Science Foundation
    • the Independent Innovation Team Project of Jinan City

    Conference

    ICDIP 2023

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 23
      Total Downloads
    • Downloads (Last 12 months)23
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 01 Nov 2024

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media