Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3608164.3608181acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbbtConference Proceedingsconference-collections
research-article

Co-Dominant InDel Marker for Identifying Burley Tobacco

Published: 07 November 2023 Publication History

Abstract

To scientifically and efficiently identify and detect Burley tobacco materials contained in the raw materials of tobacco involved in the case, a specific molecular marker was developed in this study. We designed 2,718 pairs of TMb series InDel primers by bioinformatics analysis of large amounts of genomic data. K326 (P1), TN90 (P2), first-generation hybrids of the two parents (F1), the green leaf vein pool (B1) and the white leaf vein pool (B2), 5 genome materials were used to screen the Burly tobacco specific markers by bulked segregation analysis. One hundred tobacco materials were used to validate the specificity of screened markers. The results indicated that a co-dominant marker TMb0192 closely linked to the white tobacco leaf vein gene was obtained by bulked segregation analysis. The primer pair TMb0192 could effectively amplify a target band of 169 bp in 50 tobacco materials, while a target band of 181 bp in 50 non-Burly tobacco materials, pointing to the primer pair being specific to Burly tobacco. The marker TMb0192 could quickly and effectively identify and detect between Burly tobacco and non- Burly tobacco materials and improved scientificity and accuracy of the identification and detection of tobacco-making raw materials, which provide molecular evidence at the genome level for the tobacco industry's monopoly on anti-counterfeiting and anti-smuggling work.

Supplementary Material

full manuscript with figs and tables (X1021-2023626.docx)
full manuscript with figs and tables (X1021-2023626.zip)
full manuscript with figs and tables (X0067-2023626.zip)

References

[1]
Green, G.P. (1989). State, class, and technology in tobacco production. Agric Hum Values 6, 54–61. https://doi.org/10.1007/BF02217814
[2]
Tabuchi, T., Kiyohara, K., Hoshino, T., Bekki, K., Inaba, Y., Kunugita, N. 2016. Awareness and use of electronic cigarettes and heat-not-burn tobacco products in Japan. Addiction, 111 (4): 706-13.
[3]
Dadras, A. R., Sabouri, H., Nejad, G. M., Sabouri, A., & Shoai-Deylami, M. (2014). Association analysis, genetic diversity and structure analysis of tobacco based on AFLP markers. Mol Biol Rep, 41(5), 3317-3329.
[4]
Julio, E., Verrier, J. L., & Dorlhac de Borne, F. (2006). Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theor Appl Genet, 112(2), 335-346.
[5]
Bahulikar, R. A., Stanculescu, D., Preston, C. A., & Baldwin, I. T. (2004). ISSR and AFLP analysis of the temporal and spatial population structure of the post-fire annual, Nicotiana attenuata, in SW Utah. BMC Ecol, 4, 12.
[6]
Syracuse, A. J., Johnson, C. S., Eisenback, J. D., Nessler, C. L., & Smith, E. P. (2004). Intraspecific Variability within Globodera tabacum solanacearum Using Random Amplified Polymorphic DNA. J Nematol, 36(4), 433-439. Retrieved from https://www.ncbi.nlm.nih.gov/ /19262823
[7]
Huang, L., Cao, H., Yang, L., Yu, Y., & Wang, Y. (2013). Large-scale development of PIP and SSR markers and their complementary applied in Nicotiana. Genetika, 49(8), 953-965.
[8]
Cai, C., Yang, Y., Cheng, L., Tong, C., & Feng, J. (2015). Development and assessment of est-ssr marker for the genetic diversity among tobaccos (Nicotiana tabacum L.). Genetika, 51(6), 694-703.
[9]
Wang, X., Yang, S., Chen, Y., Zhang, S., Zhao, Q., Li, M., Bennetzen, J. L. (2018). Comparative genome-wide characterization leading to simple sequence repeat marker development for Nicotiana. BMC Genomics, 19(1), 500.
[10]
Huang, L., Cao, H., Yang, L., Yu, Y., & Wang, Y. (2013). Large-scale development of PIP and SSR markers and their complementary applied in Nicotiana. Genetika, 49(8), 953-965.
[11]
Saygili, I., Kandemir, N., Kinay, A., Aytac, S., & Ayan, A. K. (2022). SSR marker-based genetic characterization of Turkish oriental tobaccos. Mol Biol Rep, 49(12), 11351-11358.
[12]
Wang, X., Yang, S., Chen, Y., Zhang, S., Zhao, Q., Li, M., Bennetzen, J. L. (2018). Comparative genome-wide characterization leading to simple sequence repeat marker development for Nicotiana. BMC Genomics, 19(1), 500.
[13]
Vianna, M. F., Pelizza, S., Russo, M. L., Toledo, A., Mourelos, C., & Scorsetti, A. C. (2020). ISSR markers to explore entomopathogenic fungi genetic diversity: Implications for biological control of tobacco pests. J Biosci, 45. Retrieved from https://www.ncbi.nlm.nih.gov/ /33361627
[14]
Yang, B. C., Xiao, B. G., Chen, X. J., & Shi, C. H. (2005). [Genetic diversity of flue-cured tobacco varieties based on ISSR markers]. Yi Chuan, 27(5), 753-758. Retrieved from https://www.ncbi.nlm.nih.gov/ /16257904
[15]
Tezuka, T., Onosato, K., Hijishita, S., & Marubashi, W. (2004). Development of Q-chromosome-specific DNA markers in tobacco and their use for identification of a tobacco monosomic line. Plant Cell Physiol, 45(12), 1863-1869.
[16]
Rai, R., Kulkarni, V., & Saranath, D. (2004). Genome wide instability scanning in chewing-tobacco associated oral cancer using inter simple sequence repeat PCR. Oral Oncol, 40(10), 1033-1039.
[17]
Lu, X. P., Xiao, B. G., Li, Y. P., Gui, Y. J., Wang, Y., & Fan, L. J. (2013). Diversity arrays technology (DArT) for studying the genetic polymorphism of flue-cured tobacco (Nicotiana tabacum). J Zhejiang Univ Sci B, 14(7), 570-577.
[18]
Tong, Z., Xu, M., Zhang, Q., Lin, F., Fang, D., Chen, X., . . . Xiao, B. (2023). Construction of a high-density genetic map and dissection of genetic architecture of six agronomic traits in tobacco (Nicotiana tabacum L.). Front Plant Sci, 14, 1126529.
[19]
Xiao, B., Tan, Y., Long, N., Chen, X., Tong, Z., Dong, Y., & Li, Y. (2015). SNP-based genetic linkage map of tobacco (Nicotiana tabacum L.) using next-generation RAD sequencing. J Biol Res (Thessalon), 22, 11.
[20]
Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., Chen, Q. (2018). SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience, 7(1), 1-6.
[21]
Martiniano, R., Garrison, E., Jones, E. R., Manica, A., & Durbin, R. (2020). Removing reference bias and improving indel calling in ancient DNA data analysis by mapping to a sequence variation graph. Genome Biol, 21(1), 250.
[22]
Ghoshal, B., Vong, B., Picard, C. L., Feng, S., Tam, J. M., & Jacobsen, S. E. (2020). A viral guide RNA delivery system for CRISPR-based transcriptional activation and heritable targeted DNA demethylation in Arabidopsis thaliana. PLoS Genet, 16(12), e1008983.
[23]
Alonso-Garrido, M., Lozano, M., Riffo-Campos, A. L., Font, G., Vila-Donat, P., & Manyes, L. (2023). Assessment of single-nucleotide variant discovery protocols in RNA-seq data from human cells exposed to mycotoxins. Toxicol Mech Methods, 33(3), 215-221.
[24]
Anderson, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D., & Sorrells, M. E. (1993). Optimizing parental selection for genetic linkage maps. Genome, 36(1), 181-186.
[25]
Tong, Z., Xiao, B., Jiao, F., Fang, D., Zeng, J., Wu, X., . . . Li, Y. (2016). Large-scale development of SSR markers in tobacco and construction of a linkage map in flue-cured tobacco. Breed Sci, 66(3), 381-390.
[26]
Zhang Ke, Long Jie, Wang Chunqiong, Sun Haowei, Zhang Xiaowei, Zhang Jiwu, Cai Jieyun, Gai Xiaolei, Liu Zhonghua, Xiao Di, Yang Shuhan, Zhijun, Chen Dan. 2022. Research on specific molecular markers for the identification of Nicotiana plants. 6th International Conference on Biological Information and Biomedical Engineering, BIBE 2022, China, CA, 160-167.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICBBT '23: Proceedings of the 2023 15th International Conference on Bioinformatics and Biomedical Technology
May 2023
313 pages
ISBN:9798400700385
DOI:10.1145/3608164
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 November 2023

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Burly tobacco
  2. InDel Marker
  3. TMb
  4. co-dominant
  5. identification
  6. tobacco materials irregularity involved

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • This research was supported by the Yunnan Tobacco Company Research Project.

Conference

ICBBT 2023

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 11
    Total Downloads
  • Downloads (Last 12 months)9
  • Downloads (Last 6 weeks)1
Reflects downloads up to 21 Dec 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media