Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3610978.3638374acmconferencesArticle/Chapter ViewAbstractPublication PageshriConference Proceedingsconference-collections
abstract

Shaping Relatable Robots: A Child-Centered Approach to Social Personalization

Published: 11 March 2024 Publication History

Abstract

While social robots hold significant potential in education, not all children find their interaction with a robot relatable. We present a child-centered research approach that actively involves children in shaping personalized interaction content. We applied this method in a user study (n=102, 8-13 y.o) where we designed robot humor that was tailored to different age groups. Results indicated that children found age-personalized humor more amusing and felt a stronger affinity with it, both personally and at the group level. Our forthcoming longitudinal study will focus on enhancing children's relatedness to the robot and a book, aiming to stimulate reading motivation. We plan to investigate how generative AI can efficiently scale up both co-design and content creation steps.

References

[1]
Patrícia Alves-Oliveira, Patrícia Arriaga, Ana Paiva, and Guy Hoffman. 2021. Children as Robot Designers. In Proceedings of the 2021 ACM/IEEE International Conference on Human-Robot Interaction (HRI '21). Association for Computing Machinery, New York, NY, USA, 399--408. https://doi.org/10.1145/3434073.3444650
[2]
Tony Belpaeme, James Kennedy, Aditi Ramachandran, Brian Scassellati, and Fumihide Tanaka. 2018. Social robots for education: A review. Science Robotics 3, 21 (Aug. 2018), eaat5954. https://doi.org/10.1126/scirobotics.aat5954 Publisher: American Association for the Advancement of Science.
[3]
Filippo Cavallo, Francesco Semeraro, Laura Fiorini, Gergely Magyar, Peter Sincák, and Paolo Dario. 2018. Emotion Modelling for Social Robotics Applications: A Review. Journal of Bionic Engineering 15, 2 (March 2018), 185--203. https://doi.org/10.1007/s42235-018-0015-y
[4]
Aduén Darriba Frederiks, Johanna Renny Octavia, Cesar Vandevelde, and Jelle Saldien. 2019. Towards Participatory Design of Social Robots. In Human-Computer Interaction -- INTERACT 2019, David Lamas, Fernando Loizides, Lennart Nacke, Helen Petrie, Marco Winckler, and Panayiotis Zaphiris (Eds.). Vol. 11747. Springer International Publishing, Cham, 527--535. https://doi.org/10.1007/978--3-030--29384-0_32 Series Title: Lecture Notes in Computer Science.
[5]
Thomas S. Dee and Emily K. Penner. 2017. The Causal Effects of Cultural Relevance: Evidence From an Ethnic Studies Curriculum. American Educational Research Journal 54, 1 (Feb. 2017), 127--166. https://doi.org/10.3102/0002831216677002 Publisher: American Educational Research Association.
[6]
Zijian Ding and Joel Chan. 2023. Mapping the Design Space of Interactions in Human-AI Text Co-creation Tasks. arXiv e-prints (2023), arXiv--2303.
[7]
Kurt W Fischer and Daniel Bullock. 1984. Cognitive development in school-age children: Conclusions and new directions. Development during middle childhood: The years from six to twelve (1984), 70--146.
[8]
Lucrezia Grassi, Carmine Tommaso Recchiuto, and Antonio Sgorbissa. 2022. Knowledge-Grounded Dialogue Flow Management for Social Robots and Conversational Agents. International Journal of Social Robotics 14, 5 (July 2022), 1273--1293. https://doi.org/10.1007/s12369-022-00868-z
[9]
Marius Hoggenmueller, Maria Luce Lupetti, Willem Van Der Maden, and Kazjon Grace. 2023. Creative AI for HRI Design Explorations. In Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction. ACM, Stockholm Sweden, 40--50. https://doi.org/10.1145/3568294.3580035
[10]
Ayanna Howard and Jason Borenstein. 2018. The Ugly Truth About Ourselves and Our Robot Creations: The Problem of Bias and Social Inequity. Science and Engineering Ethics 24, 5 (Oct. 2018), 1521--1536. https://doi.org/10.1007/s11948-017--9975--2
[11]
Bahar Irfan, Aditi Ramachandran, Samuel Spaulding, Dylan Glas, Iolanda Leite, and Kheng Koay. 2019. Personalization in Long-Term Human-Robot Interaction. 685--686. https://doi.org/10.1109/HRI.2019.8673076
[12]
Amelia J. Klein. 1985. Children's Humor: A Cognitive-Developmental Perspective. Technical Report. https://eric.ed.gov/?id=ED265937 ERIC Number: ED265937.
[13]
Hee Rin Lee, Selma Sabanovic, Wan-Ling Chang, Shinichi Nagata, Jennifer Piatt, Casey Bennett, and David Hakken. 2017. Steps Toward Participatory Design of Social Robots: Mutual Learning with Older Adults with Depression. In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction. ACM, Vienna Austria, 244--253. https://doi.org/10.1145/2909824.3020237
[14]
Mike Ligthart, Mark. A. Neerincx, and Koen V. Hindriks. 2019. Getting Acquainted for a Long-Term Child-Robot Interaction. In Social Robotics, Vol. 11876. Springer International Publishing, Cham, 423--433. https://doi.org/10.1007/978--3-030--35888--4_39 Series Title: Lecture Notes in Computer Science.
[15]
Mike Ligthart and Rifca Peters. 2018. The Challenges of Evaluating Child-Robot Interaction with Questionnaires. What Could Go Wrong (2018).
[16]
Mike E.U. Ligthart, Simone M. de Droog, Marianne Bossema, Lamia Elloumi, Kees Hoogland, Matthijs H.J. Smakman, Koen V. Hindriks, and Somaya Ben Allouch. 2023. Design Specifications for a Social Robot Math Tutor. In Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction (HRI '23). Association for Computing Machinery, New York, NY, USA, 321--330. https://doi.org/10.1145/3568162.3576957
[17]
Mike E.U. Ligthart, Mark A. Neerincx, and Koen V. Hindriks. 2022. Memory-Based Personalization for Fostering a Long-Term Child-Robot Relationship. In 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). 80--89. https://doi.org/10.1109/HRI53351.2022.9889446
[18]
Mike E. U. Ligthart, Mark A. Neerincx, and Koen V. Hindriks. 2022. Getting acquainted: First steps for child-robot relationship formation. Frontiers in Robotics and AI 9 (Sept. 2022), 853665. https://doi.org/10.3389/frobt.2022.853665
[19]
Hugh Xuechen Liu, Yuxuan Huang, and Jussi Pekka Holopainen. 2023. Call for Critical and Speculative Design in Human-Computer Co-creativity: An Overview Study. In 14th International Conference on Computational Creativity (ICCC'23).
[20]
Cultuur en Wetenschap Ministerie van Onderwijs. 2022. Peil.Leesvaardigheid einde (speciaal) basisonderwijs 2020--2021 - Themarapport - Inspectie van het onderwijs. https://www.onderwijsinspectie.nl/documenten/themarapporten/2022/12/13/peil-leesvaardigheid-einde-basisonderwijs-en-speciaal-basisonderwijs-2020--2021 Last Modified: 2022--12--12T17:00 Publisher: Ministerie van Onderwijs, Cultuur en Wetenschap.
[21]
O Mubin, CJ Stevens, S Shadid, A Al Mahmud, and JJ Dong. 2013. A review of the applicability of robots in education. Technology for Education and Learning 1 (2013), 1--7. https://doi.org/10.2316/Journal.209.2013.1.209-0015
[22]
Ina Mullis, Matthias Von Davier, Pierre Foy, Bethany Fishbein, Katherine Reynolds, and Erin Wry. 2023. PIRLS 2021 International Results in Reading. Technical Report. TIMSS & PIRLS International Study Center. https://doi.org/10.6017/lse.tpisc.tr2103.kb5342
[23]
Anouk Neerincx, Daan Veldhuis, Judith M. F. Masthoff, and Maartje M. A. de Graaf. 2023. Co-designing a social robot for child health care. International Journal of Child-Computer Interaction 38 (Dec. 2023), 100615. https://doi.org/10.1016/j.ijcci.2023.100615
[24]
Andreea Niculescu, Betsy Van Dijk, Anton Nijholt, Haizhou Li, and Swee Lan See. 2013. Making Social Robots More Attractive: The Effects of Voice Pitch, Humor and Empathy. International Journal of Social Robotics 5, 2 (April 2013), 171--191. https://doi.org/10.1007/s12369-012-0171-x
[25]
Anne-Nelly Perret-Clermont, Felice Carugati, and John Oates. 2004. A socio-cognitive perspective on learning and cognitive development. In Cognitive and language development in children. The Open University & Blackwell, 303--332.
[26]
Richard M. Ryan and Edward L. Deci. 2017. Self-determination theory: Basic psychological needs in motivation, development, and wellness. The Guilford Press, New York, NY, US. https://doi.org/10.1521/978.14625/28806 Pages: xii, 756.
[27]
Clay Spinuzzi. 2005. The methodology of participatory design. Technical communication 52, 2 (2005), 163--174. Publisher: Society for Technical Communication.
[28]
Adriana Tapus, Cristian Tapus, and Maja J. Mataric. 2008. User-robot personality matching and assistive robot behavior adaptation for post-stroke rehabilitation therapy. Intelligent Service Robotics 1, 2 (April 2008), 169--183. https://doi.org/10.1007/s11370-008-0017--4
[29]
Benedict T. C. Tay, Sock Ching Low, Kwang Hee Ko, and Taezoon Park. 2016. Types of humor that robots can play. Computers in Human Behavior 60 (2016), 19--28. https://doi.org/10.1016/j.chb.2016.01.042 Place: Netherlands Publisher: Elsevier Science.
[30]
Caroline L. Van Straten, Jochen Peter, and Rinaldo Kühne. 2020. Child--Robot Relationship Formation: A Narrative Review of Empirical Research. International Journal of Social Robotics 12, 2 (May 2020), 325--344. https://doi.org/10.1007/s12369-019-00569-0

Index Terms

  1. Shaping Relatable Robots: A Child-Centered Approach to Social Personalization

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        HRI '24: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction
        March 2024
        1408 pages
        ISBN:9798400703232
        DOI:10.1145/3610978
        Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

        Sponsors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 11 March 2024

        Check for updates

        Author Tags

        1. child-robot interaction
        2. co-design
        3. personalization

        Qualifiers

        • Abstract

        Conference

        HRI '24
        Sponsor:

        Acceptance Rates

        Overall Acceptance Rate 268 of 1,124 submissions, 24%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 143
          Total Downloads
        • Downloads (Last 12 months)143
        • Downloads (Last 6 weeks)6
        Reflects downloads up to 23 Jan 2025

        Other Metrics

        Citations

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media