Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3615886.3627740acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article
Open access

SRAI: Towards Standardization of Geospatial AI

Published: 20 November 2023 Publication History

Abstract

Spatial Representations for Artificial Intelligence (srai) is a Python library for working with geospatial data. The library can download geospatial data, split a given area into micro-regions using multiple algorithms and train an embedding model using various architectures. It includes baseline models as well as more complex methods from published works. Those capabilities make it possible to use srai in a complete pipeline for geospatial task solving. The proposed library is the first step to standardize the geospatial AI domain toolset. It is fully open-source and published under Apache 2.0 licence.

References

[1]
Apache Software Foundation. [n.d.]. Apache Sedona. https://sedona.apache.org/
[2]
Geoff Boeing. 2017. OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers, Environment and Urban Systems 65 (2017), 126--139. https://doi.org/10.1016/j.compenvurbsys.2017.05.004
[3]
Buru Chang, Yonggyu Park, Donghyeon Park, Seongsoon Kim, and Jaewoo Kang. 2018. Content-Aware Hierarchical Point-of-Interest Embedding Model for Successive POI Recommendation. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Vol. 2018-July. International Joint Conferences on Artificial Intelligence Organization, California, 3301--3307. https://doi.org/10.24963/ijcai.2018/458
[4]
Joris Van den Bossche, Kelsey Jordahl, Martin Fleischmann, James McBride, Jacob Wasserman, Matt Richards, Adrian Garcia Badaracco, Alan D. Snow, Jeff Tratner, Jeffrey Gerard, Brendan Ward, Matthew Perry, Carson Farmer, Geir Arne Hjelle, Mike Taves, Ewout ter Hoeven, Micah Cochran, rraymondgh, Sean Gillies, Giacomo Caria, Lucas Culbertson, Matt Bartos, Nick Eubank, Ray Bell, sangarshanan, John Flavin, Sergio Rey, maxalbert, Aleksey Bilogur, and Christopher Ren. 2023. geopandas/geopandas: v0.13.2. GeoPandas. https://doi.org/10.5281/zenodo.8009629
[5]
William Falcon and The PyTorch Lightning team. 2019. PyTorch Lightning. https://doi.org/10.5281/zenodo.3828935
[6]
Christoph Feichtenhofer, Haoqi Fan, Bo Xiong, Ross Girshick, and Kaiming He. 2021. A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 3298--3308. https://doi.org/10.1109/CVPR46437.2021.00331
[7]
Max Gabrielsson. 2023. DuckDB Spatial Extension. DuckDB Labs. https://github.com/duckdblabs/duckdb_spatial
[8]
Rahul Ghosh, Xiaowei Jia, Leikun Yin, Chenxi Lin, Zhenong Jin, and Vipin Kumar. 2022. Clustering Augmented Self-Supervised Learning: An Application to Land Cover Mapping. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems (Seattle, Washington) (SIGSPATIAL '22). Association for Computing Machinery, New York, NY, USA, Article 3, 10 pages. https://doi.org/10.1145/3557915.3560937
[9]
Sean Gillies, Casper van der Wel, Joris Van den Bossche, Mike W. Taves, Joshua Arnott, Brendan C. Ward, and others. 2023. Shapely. Shapely. https://doi.org/10.5281/zenodo.5597138
[10]
Google Inc. 2023. S2 Geometry. https://s2geometry.io/. Accessed: 2023-06-23.
[11]
Piotr Gramacki, Szymon Woźniak, and Piotr Szymański. 2021. Gtfs2vec: Learning GTFS Embeddings for Comparing Public Transport Offer in Microregions. In Proceedings of the 1st ACM SIGSPATIAL International Workshop on Searching and Mining Large Collections of Geospatial Data (Beijing, China) (GeoSearch'21). Association for Computing Machinery, New York, NY, USA, 5--12. https://doi.org/10.1145/3486640.3491392
[12]
Anita Graser. 2019. MovingPandas: Efficient Structures for Movement Data in Python. GI_Forum 1 (2019), 54--68. https://doi.org/10.1553/giscience2019_01_s54
[13]
Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure, dynamics, and function using NetworkX. Technical Report. Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
[14]
Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array programming with NumPy. Nature 585 (2020), 357--362. https://doi.org/10.1038/s41586-020-2649-2
[15]
Sarah Hoffmann. 2023. pyosmium. https://github.com/osmcode/pyosmium.
[16]
Hsun-Ping Hsieh, Su Wu, Ching-Chung Ko, Chris Shei, Zheng-Ting Yao, and Yu-Wen Chen. 2022. Forecasting Fine-Grained Air Quality for Locations without Monitoring Stations Based on a Hybrid Predictor with Spatial-Temporal Attention Based Network. Applied Sciences 12, 9 (2022). https://doi.org/10.3390/app12094268
[17]
Kacper Leśniara and Piotr Szymański. 2022. Highway2vec: Representing OpenStreetMap Microregions with Respect to Their Road Network Characteristics. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery (Seattle, Washington) (GeoAI '22). Association for Computing Machinery, New York, NY, USA, 18--29. https://doi.org/10.1145/3557918.3565865
[18]
Quentin Lhoest, Albert Villanova del Moral, Patrick von Platen, Thomas Wolf, Mario Šaško, Yacine Jernite, Abhishek Thakur, Lewis Tunstall, Suraj Patil, Mariama Drame, Julien Chaumond, Julien Plu, Joe Davison, Simon Brandeis, Victor Sanh, Teven Le Scao, Kevin Canwen Xu, Nicolas Patry, Steven Liu, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Nathan Raw, Sylvain Lesage, Anton Lozhkov, Matthew Carrigan, Théo Matussière, Leandro von Werra, Lysandre Debut, Stas Bekman, and Clément Delangue. 2021. Datasets: A Community Library for Natural Language Processing. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Association for Computational Linguistics, 175--184. https://aclanthology.org/2021.emnlp-demo.21
[19]
Yijun Lin, Nikhit Mago, Yu Gao, Yaguang Li, Yao-Yi Chiang, Cyrus Shahabi, and José Luis Ambite. 2018. Exploiting Spatiotemporal Patterns for Accurate Air Quality Forecasting Using Deep Learning. In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (Seattle, Washington) (SIGSPATIAL '18). Association for Computing Machinery, New York, NY, USA, 359--368. https://doi.org/10.1145/3274895.3274907
[20]
Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations in Vector Space. http://arxiv.org/abs/1301.3781
[21]
Masanao Ochi, Yuko Nakashio, Yuta Yamashita, Ichiro Sakata, Kimitake Asatani, Matthew Ruttley, and Junichiro Mori. 2016. Representation Learning for Geospatial Areas Using Large-Scale Mobility Data from Smart Card. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (Heidelberg, Germany) (UbiComp '16). Association for Computing Machinery, New York, NY, USA, 1381--1389. https://doi.org/10.1145/2968219.2968416
[22]
OpenStreetMap contributors. 2023. About OpenStreetMap. https://wiki.openstreetmap.org/wiki/About_OpenStreetMap. Accessed 2023-05-24.
[23]
Luca Pappalardo, Filippo Simini, Gianni Barlacchi, and Roberto Pellungrini. 2019. scikit-mobility. https://doi.org/10.5281/zenodo.3273053
[24]
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024--8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
[25]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011), 2825--2830.
[26]
Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans, Louisiana, 2227--2237. https://doi.org/10.18653/v1/N18-1202
[27]
Mark Raasveldt and Hannes Mühleisen. 2023. DuckDB. DuckDB Labs. https://github.com/duckdb/duckdb
[28]
Kamil Raczycki and Piotr Szymański. 2021. Transfer Learning Approach to Bicycle-Sharing Systems' Station Location Planning Using OpenStreetMap Data. In Proceedings of the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities (Beijing, China) (ARIC '21). Association for Computing Machinery, New York, NY, USA, 1--12. https://doi.org/10.1145/3486626.3493434
[29]
Alex Raichev. 2019. GTFS Kit. https://github.com/mrcagney/gtfs_kit.
[30]
Sergio Rey, Phil, Taylor Oshan, Charles Schmidt, jlaura, Levi John Wolf, Dani Arribas-Bel, David C. Folch, mhwang4, Nicholas Malizia, Wei Kang, Pedro Amaral, James Gaboardi, Luc Anselin, eli knaap, Qunshan, Stefanie Lumnitz, Andrew Winslow, Bas Couwenberg, Marynia, Omar Khursheed, Martin Fleischmann, KSai, yogabonito, Andrew Annex, Filipe, Stuart Lynn, Peter Quackenbush, Karl Dunkle Werner, and Caleb Robinson. 2023. pysal/pysal: Release v23.01. https://doi.org/10.5281/zenodo.7587827
[31]
Fatih Sivrikaya and Ömer Küçük. 2022. Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecological Informatics 68 (2022), 101537. https://doi.org/10.1016/j.ecoinf.2021.101537
[32]
Vincent Spruyt. 2018. Loc2Vec: Learning location embeddings with triplet-loss networks. https://sentiance.com/loc2vec-learning-location-embeddings-w-triplet-loss-networks. Accessed: 2023-06-22.
[33]
Adam J. Stewart, Caleb Robinson, Isaac A. Corley, Anthony Ortiz, Juan M. Lavista Ferres, and Arindam Banerjee. 2022. TorchGeo: Deep Learning With Geospatial Data. In Proceedings of the 30th International Conference on Advances in Geographic Information Systems (SIGSPATIAL '22). Association for Computing Machinery, Seattle, Washington, 1--12. https://doi.org/10.1145/3557915.3560953
[34]
The pandas development team. 2023. pandas-dev/pandas: Pandas. https://github.com/pandas-dev/pandas
[35]
Uber Technologies Inc. 2023. H3: Uber's Hexagonal Hierarchical Spatial Index. https://eng.uber.com/h3/. Accessed: 2023-06-23.
[36]
Leonardo Uieda. 2018. Verde: Processing and gridding spatial data using Green's functions. Journal of Open Source Software 3, 30 (2018), 957. https://doi.org/10.21105/joss.00957
[37]
Joris Van Den Bossche, Martin Fleischmann, Thomas Statham, Daniel Jahn (Dahn), Tom Augspurger, Julia Signell, Pete Gadomski, Ray Bell, Stefanie Lumnitz, Ali Abbas Zaidi, Fred Bunt, Ian Rose, Irina Truong, James Bourbeau, Jason Baker, Matt Morris, Raphael Hagen, RichardScottOZ, and Bernardpazio. 2023. geopandas/daskgeopandas: vO.3.1. https://doi.org/10.5281/ZENODO.7875807
[38]
Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Perric Cistac, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language Processing. Association for Computational Linguistics, 38--45. https://www.aclweb.org/anthology/2020.emnlp-demos.6
[39]
Szymon Woźniak and Piotr Szymański. 2021. Hex2vec: Context-Aware Embedding H3 Hexagons with OpenStreetMap Tags. In Proceedings of the 4th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery (Beijing, China) (GEOAI '21). Association for Computing Machinery, New York, NY, USA, 61--71. https://doi.org/10.1145/3486635.3491076
[40]
Ning Wu, Xin Wayne Zhao, Jingyuan Wang, and Dayan Pan. 2020. Learning Effective Road Network Representation with Hierarchical Graph Neural Networks. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, 6--14. https://doi.org/10.1145/3394486.3403043
[41]
Qiusheng Wu and Lucas Prado Osco. 2023. samgeo: A Python package for segmenting geospatial data with the Segment Anything Model (SAM). https://doi.org/10.5281/zenodo.7966658
[42]
Zijun Yao, Yanjie Fu, Bin Liu, Wangsu Hu, and Hui Xiong. 2018. Representing Urban Functions through Zone Embedding with Human Mobility Patterns. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Vol. 2018-July. International Joint Conferences on Artificial Intelligence Organization, California, 3919--3925. https://doi.org/10.24963/ijcai.2018/545
[43]
Manzhu Yu, Chaowei Yang, and Yun Li. 2018. Big Data in Natural Disaster Management: A Review. Geosciences 8, 5 (2018). https://doi.org/10.3390/geosciences8050165
[44]
Sen Zhang, Shaobo Li, Xiang Li, and Yong Yao. 2020. Representation of Traffic Congestion Data for Urban Road Traffic Networks Based on Pooling Operations. Algorithms 13, 4 (2020). https://doi.org/10.3390/a13040084
[45]
Zheng Zhang and Liang Zhao. 2021. Representation Learning on Spatial Networks. In Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34. Curran Associates, Inc., 2303--2318. https://proceedings.neurips.cc/paper_files/paper/2021/file/12e35d9186dd72fe62fd039385890b9c-Paper.pdf

Cited By

View all
  • (2024)Current Trends, Opportunities, and Futures Research Directions in Geospatial Technologies for Smart CitiesRecent Trends in Geospatial AI10.4018/979-8-3693-8054-3.ch009(239-270)Online publication date: 2-Dec-2024
  • (2024)Revolutionizing Land Cover Analysis: A Systematic Review Of Geospatial Intelligence With Classification And SegmentationSSRN Electronic Journal10.2139/ssrn.4988857Online publication date: 2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GeoAI '23: Proceedings of the 6th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery
November 2023
135 pages
ISBN:9798400703485
DOI:10.1145/3615886
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 November 2023
Revised: 12 October 2023
Received: 15 September 2023

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. geospatial data processing
  2. openstreetmap embeddings
  3. python library
  4. spatial embeddings
  5. spatial representation learning
  6. standardization in geospatial domain
  7. urban data embeddings

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

SIGSPATIAL '23
Sponsor:

Acceptance Rates

Overall Acceptance Rate 17 of 25 submissions, 68%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)306
  • Downloads (Last 6 weeks)35
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Current Trends, Opportunities, and Futures Research Directions in Geospatial Technologies for Smart CitiesRecent Trends in Geospatial AI10.4018/979-8-3693-8054-3.ch009(239-270)Online publication date: 2-Dec-2024
  • (2024)Revolutionizing Land Cover Analysis: A Systematic Review Of Geospatial Intelligence With Classification And SegmentationSSRN Electronic Journal10.2139/ssrn.4988857Online publication date: 2024

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media