Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3620666.3651372acmconferencesArticle/Chapter ViewAbstractPublication PagesasplosConference Proceedingsconference-collections
research-article
Open access

OnePerc: A Randomness-aware Compiler for Photonic Quantum Computing

Published: 27 April 2024 Publication History

Abstract

The photonic platform holds great promise for quantum computing. Nevertheless, the intrinsic probabilistic characteristic of its native fusion operations introduces substantial randomness into the computing process, posing significant challenges to achieving scalability and efficiency in program execution. In this paper, we introduce a randomness-aware compilation framework designed to concurrently achieve scalability and efficiency. Our approach leverages an innovative combination of offline and online optimization passes, with a novel intermediate representation serving as a crucial bridge between them. Through a comprehensive evaluation, we demonstrate that this framework significantly outperforms the most efficient baseline compiler in a scalable manner, opening up new possibilities for realizing scalable photonic quantum computing.

References

[1]
Jeremy L. O'Brien, Akira Furusawa, and Jelena Vučković. Photonic quantum technologies. Nature Photonics, 3(12):687, 2009. URL: https://www.nature.com/articles/nphoton.2009.229
[2]
S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev. Material platforms for integrated quantum photonics. Opt. Mater. Express, 7(1):111--132, Jan 2017. URL: http://opg.optica.org/ome/abstract.cfm?URI=ome-7-1-111
[3]
Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan. Quantum computational advantage using photons. Science, 370(6523):1460--1463, 2020.
[4]
Han-Sen Zhong, Yu-Hao Deng, Jian Qin, Hui Wang, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Dian Wu, Si-Qiu Gong, Hao Su, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Jelmer J. Renema, Chao-Yang Lu, and Jian-Wei Pan. Phase-programmable gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett., 127:180502, Oct 2021.
[5]
Lars S. Madsen, Fabian Laudenbach, Mohsen Falamarzi. Askarani, Fabien Rortais, Trevor Vincent, Jacob F. F. Bulmer, Filippo M. Miatto, Leonhard Neuhaus, Lukas G. Helt, Matthew J. Collins, Adriana E. Lita, Thomas Gerrits, Sae Woo Nam, Varun D. Vaidya, Matteo Menotti, Ish Dhand, Zachary Vernon, Nicolás Quesada, and Jonathan Lavoie. Quantum computational advantage with a programmable photonic processor. Nature, 606(7912):75--81, Jun 2022. URL: https://www.nature.com/articles/s41586-022-04725-x
[6]
Terry Rudolph. Fusion based photonic quantum computing. In APS March Meeting Abstracts, volume 2022, pages D28--001, 2022. URL: https://www.nature.com/articles/s41467-023-36493-1
[7]
H Bombin, IH Kim, D Litinski, N Nickerson, M Pant, F Pastawski, S Roberts, and T Rudolph. Interleaving: Modular architectures for fault-tolerant photonic quantum computing (2021). arXiv preprint arXiv:2103.08612. URL: https://arxiv.org/abs/2103.08612
[8]
Michel H Devoret and Robert J Schoelkopf. Superconducting circuits for quantum information: an outlook. Science, 339(6124):1169--1174, 2013.
[9]
Colin D Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M Sage. Trapped-ion quantum computing: Progress and challenges. Applied Physics Reviews, 6(2):021314, 2019. URL: https://pubs.aip.org/aip/apr/article-abstract/6/2/021314/570103/Trappedion-quantum-computing-Progress-and?redirectedFrom=fulltext
[10]
Mark Saffman. Quantum computing with atomic qubits and rydberg interactions: progress and challenges. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(20):202001, 2016. URL: https://iopscience.iop.org/article/10.1088/0953-4075/49/20/202001.
[11]
Warren P Grice. Arbitrarily complete bell-state measurement using only linear optical elements. Physical Review A, 84(4):042331, 2011. URL: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.84.042331.
[12]
Fabian Ewert and Peter van Loock. 3/4-efficient bell measurement with passive linear optics and unentangled ancillae. Physical review letters, 113(14):140403, 2014. URL: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.140403.
[13]
Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Phys. Today, 54(2):60, 2001. URL: https://cds.cern.ch/record/465953/files/0521635039_TOC.pdf.
[14]
Qiskit contributors. Qiskit: An open-source framework for quantum computing, 2023. URL: https://zenodo.org/records/2562111
[15]
Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan. t|ket〉: A retargetable compiler for nisq devices. Quantum Science and Technology, 6, 04 2020. URL: https://iopscience.iop.org/article/10.1088/2058-9565/ab8e92.
[16]
Robert Raussendorf, Dan Browne, and Hans Briegel. Measurement-based quantum computation on cluster states. Raussendorf, R. and Browne, D.E. and Briegel, H.J. (2003) Measurement-based quantum computation on cluster states. Physical Review A, 68 (2). 022312.1-022312.32. ISSN 10502947, 68, 08 2003. URL: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.68.022312.
[17]
Anne Broadbent and Elham Kashefi. Parallelizing quantum circuits. Theoretical computer science, 410(26):2489--2510, 2009. URL: https://www.sciencedirect.com/science/article/pii/S0304397508009377?via%3Dihub
[18]
Hezi Zhang, Anbang Wu, Yuke Wang, Gushu Li, Hassan Shapourian, Alireza Shabani, and Yufei Ding. Oneq: A compilation framework for photonic one-way quantum computation. In Proceedings of the 50th Annual International Symposium on Computer Architecture, pages 1--14, 2023.
[19]
Ming-Jun Li and Tetsuya Hayashi. Advances in low-loss, large-area, and multicore fibers. In Optical Fiber Telecommunications VII, pages 3--50. Elsevier, 2020. URL: https://www.sciencedirect.com/science/article/abs/pii/B9780128165027000014
[20]
Pieter Kok, William J Munro, Kae Nemoto, Timothy C Ralph, Jonathan P Dowling, and Gerard J Milburn. Linear optical quantum computing with photonic qubits. Reviews of modern physics, 79(1):135, 2007. URL: https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.79.135.
[21]
Guilherme Luiz Zanin, Maxime J Jacquet, Michele Spagnolo, Peter Schiansky, Irati Alonso Calafell, Lee A Rozema, and Philip Walther. Fiber-compatible photonic feed-forward with 99% fidelity. Optics Express, 29(3):3425--3437, 2021. URL: https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-3-3425&id=446800
[22]
Atsushi Sakaguchi, Shunya Konno, Fumiya Hanamura, Warit Asavanant, Kan Takase, Hisashi Ogawa, Petr Marek, Radim Filip, Junichi Yoshikawa, Elanor Huntington, et al. Nonlinear feedforward enabling quantum computation. Nature Communications, 14(1):3817, 2023. URL: https://www.nature.com/articles/s41467-023-39195-w
[23]
Mercedes Gimeno-Segovia, Pete Shadbolt, Dan E Browne, and Terry Rudolph. From three-photon ghz states to universal ballistic quantum computation. 2015. URL: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.020502.
[24]
Mihir Pant, Don Towsley, Dirk Englund, and Saikat Guha. Percolation thresholds for photonic quantum computing. Nature communications, 10(1):1070, 2019. URL: https://www.nature.com/articles/s41467-019-08948-x
[25]
Daniel E Browne, Matthew B Elliott, Steven T Flammia, Seth T Merkel, Akimasa Miyake, and Anthony J Short. Phase transition of computational power in the resource states for one-way quantum computation. New Journal of Physics, 10(2):023010, 2008. URL: https://iopscience.iop.org/article/10.1088/1367-2630/10/2/023010.
[26]
Aleks Kissinger and John van de Wetering. Pyzx: Large scale automated diagrammatic reasoning. arXiv preprint arXiv:1904.04735, 2019.
[27]
Sergei Slussarenko and Geoff J Pryde. Photonic quantum information processing: A concise review. Applied Physics Reviews, 6(4):041303, 2019. URL: https://pubs.aip.org/aip/apr/article/6/4/041303/997349/Photonic-quantum-information-processing-A-concise
[28]
Philip Walther, Kevin J Resch, Terry Rudolph, Emmanuel Schenck, Harald Weinfurter, Vlatko Vedral, Markus Aspelmeyer, and Anton Zeilinger. Experimental one-way quantum computing. Nature, 434(7030):169--176, 2005. URL: https://www.nature.com/articles/nature03347
[29]
Giuseppe Vallone, Gaia Donati, Natalia Bruno, Andrea Chiuri, and Paolo Mataloni. Experimental realization of the deutschjozsa algorithm with a six-qubit cluster state. Physical Review A, 81(5):050302, 2010. URL: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.81.050302.
[30]
Mark S Tame, Bryn A Bell, Carlo Di Franco, William J Wadsworth, and John G Rarity. Experimental realization of a one-way quantum computer algorithm solving simon's problem. Physical Review Letters, 113(20):200501, 2014. URL: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.200501.
[31]
Simone Ferrari, Carsten Schuck, and Wolfram Pernice. Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics, 7(11):1725--1758, 2018.
[32]
Jianwei Wang, Stefano Paesani, Yunhong Ding, Raffaele Santagati, Paul Skrzypczyk, Alexia Salavrakos, Jordi Tura, Remigiusz Augusiak, Laura Mančinska, Davide Bacco, et al. Multidimensional quantum entanglement with large-scale integrated optics. Science, 360(6386):285--291, 2018.
[33]
Vinicius S Ferreira, Gihwan Kim, Andreas Butler, Hannes Pichler, and Oskar Painter. Deterministic generation of multidimensional photonic cluster states with a single quantum emitter. arXiv preprint arXiv:2206.10076, 2022. URL: https://arxiv.org/abs/2206.10076
[34]
Peter J Shadbolt, Maria R Verde, Alberto Peruzzo, Alberto Politi, Anthony Laing, Mirko Lobino, Jonathan CF Matthews, Mark G Thompson, and Jeremy L O'Brien. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nature Photonics, 6(1):45--49, 2012. URL: https://www.nature.com/articles/nphoton.2011.283
[35]
Jacques Carolan, Christopher Harrold, Chris Sparrow, Enrique Martín-López, Nicholas J Russell, Joshua W Silverstone, Peter J Shadbolt, Nobuyuki Matsuda, Manabu Oguma, Mikitaka Itoh, et al. Universal linear optics. Science, 349(6249):711--716, 2015.
[36]
Stefano Paesani, Yunhong Ding, Raffaele Santagati, Levon Chakhmakhchyan, Caterina Vigliar, Karsten Rottwitt, Leif K Oxenløwe, Jianwei Wang, Mark G Thompson, and Anthony Laing. Generation and sampling of quantum states of light in a silicon chip. Nature Physics, 15(9):925--929, 2019. URL: https://www.nature.com/articles/s41567-019-0567-8
[37]
Felix Eltes, Gerardo E Villarreal-Garcia, Daniele Caimi, Heinz Siegwart, Antonio A Gentile, Andy Hart, Pascal Stark, Graham D Marshall, Mark G Thompson, Jorge Barreto, et al. An integrated optical modulator operating at cryogenic temperatures. Nature Materials, 19(11):1164--1168, 2020. URL: https:// .ncbi.nlm.nih.gov/32632281/
[38]
Cheng Wang, Mian Zhang, Xi Chen, Maxime Bertrand, Amirhassan Shams-Ansari, Sethumadhavan Chandrasekhar, Peter Winzer, and Marko Lončar. Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages. Nature, 562(7725):101--104, 2018. URL: https://www.nature.com/articles/s41586-018-0551-y
[39]
Marc Hein, Wolfgang Dür, Jens Eisert, Robert Raussendorf, M Nest, and H-J Briegel. Entanglement in graph states and its applications. arXiv preprint quant-ph/0602096, 2006. URL: https://arxiv.org/abs/quant-ph/0602096
[40]
Harry Kesten et al. The critical probability of bond percolation on the square lattice equals 1/2. Communications in mathematical physics, 74(1):41--59, 1980. URL: https://link.springer.com/article/10.1007/BF01197577.
[41]
Vincent Danos, Elham Kashefi, and Prakash Panangaden. The measurement calculus. Journal of the ACM (JACM), 54(2):8--es, 2007.
[42]
Steven A Cuccaro, Thomas G Draper, Samuel A Kutin, and David Petrie Moulton. A new quantum ripple-carry addition circuit. arXiv preprint quant-ph/0410184, 2004. URL: https://arxiv.org/abs/quant-ph/0410184
[43]
Max Alteg, Baptiste Chevalier, Octave Mestoudjian, and Johan-Luca Rossi. Study of adaptative derivative-assemble pseudo-trotter ansatzes in vqe through qiskit api. 2022. arXiv:2210.15438.
[44]
Jia-Bin You, Dax Enshan Koh, Jian Feng Kong, Wen-Jun Ding, Ching Eng Png, and Lin Wu. Exploring variational quantum eigen-solver ansatzes for the long-range xy model. 2021. arXiv:2109.00288.
[45]
Michael Norman, Vince Kellen, Shava Smallen, Brian DeMeulle, Shawn Strande, Ed Lazowska, Naomi Alterman, Rob Fatland, Sarah Stone, Amanda Tan, et al. Cloudbank: Managed services to simplify cloud access for computer science research and education. In Practice and Experience in Advanced Research Computing, pages 1--4. 2021.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ASPLOS '24: Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3
April 2024
1106 pages
ISBN:9798400703867
DOI:10.1145/3620666
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 April 2024

Check for updates

Badges

Qualifiers

  • Research-article

Funding Sources

  • NSF 2048144
  • Cisco Research
  • Robert N.Noyce Trust

Conference

ASPLOS '24

Acceptance Rates

Overall Acceptance Rate 535 of 2,713 submissions, 20%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 369
    Total Downloads
  • Downloads (Last 12 months)369
  • Downloads (Last 6 weeks)101
Reflects downloads up to 15 Oct 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media