Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
survey

Surveying Emerging Network Approaches for Military Command and Control Systems

Published: 22 January 2024 Publication History
  • Get Citation Alerts
  • Abstract

    This survey paper examines emerging network approaches for military Command and Control (C2) systems. An extensive literature review is provided along the text on network-centric C2 systems. Also, it provides a comprehensive analysis of the paradigm based on C2 concepts, mapping the significant requirements of networked C2 systems to emerging approaches. Likewise, the paper explores ways to simulate networked battle scenarios realistically, leveraging the support of multi-agent systems and network simulations. The article offers a trend analysis of combining network approaches to design innovative solutions and a promising usage of multi-agent systems for realistic simulations. In conclusion, it discusses future implementations emphasizing advanced networking solutions to integrate different technologies and to drive technology boundaries to improve the effectiveness of networked military C2 systems.

    References

    [1]
    Arthur K. Cebrowski. 1999. Network centric warfare: An emerging military response to the information age. Military Technology 27, 5 (1999), 16.
    [2]
    Stephen J. Townsend. 2018. Accelerating multi-domain operations. Military Review (2018), 4–7.
    [3]
    Wichai Pawgasame and Komwut Wipusitwarakun. 2015. Tactical wireless networks: A survey for issues and challenges. In 2015 Asian Conference on Defence Technology (ACDT). 97–102. DOI:
    [4]
    Sandeep Jalui, Tushar Hait, Tulika Hathi, and Soumes Ghosh. 2019. Advanced military helmet aided with wireless live video transmission, sensor integration and augmented reality headset. In 2019 Int. Conference on Communication and Electronics Systems (ICCES). 123–127. DOI:
    [5]
    Alexander Kott, Ananthram Swami, and Bruce J. West. 2016. The internet of battle things. Computer 49, 12 (2016), 70–75. DOI:
    [6]
    Sam Cranny-Evans and Thomas Withington. 2022. Russian Comms in Ukraine: A World of Hertz. url: https://rusi.org/explore-our-research/publications/commentary/russian-comms-ukraine-world-hertz. (march2022).
    [7]
    Lorenzo Campioni, Mariann Hauge, Lars Landmark, Niranjan Suri, and Mauro Tortonesi. 2019. Considerations on the adoption of named data networking (NDN) in tactical environments. In 2019 International Conference on Military Communications and Information Systems (ICMCIS). 1–8. DOI:
    [8]
    Rahul Amin, David Ripplinger, Devanshu Mehta, and Bow-Nan Cheng. 2015. Design considerations in applying disruption tolerant networking to tactical edge networks. IEEE Communications Magazine 53, 10 (2015), 32–38. DOI:
    [9]
    Jeferson Nobre, Denis Rosario, Cristiano Both, Eduardo Cerqueira, and Mario Gerla. 2016. Toward software-defined battlefield networking. IEEE Communications Magazine 54, 10 (2016), 152–157. DOI:
    [10]
    Nessrine Chakchouk. 2015. A survey on opportunistic routing in wireless communication networks. IEEE Communications Surveys Tutorials 17, 4 (2015), 2214–2241. DOI:
    [11]
    Haiping Wang, Hao Tang, and Sanfeng Zhang. 2017. Joint optimization in software defined wireless networks with network coded opportunistic routing. In 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). 298–302. DOI:
    [12]
    Iulisloi Zacarias, Luciano P. Gaspary, Andersonn Kohl, Ricardo Q. A. Fernandes, Jorgito M. Stocchero, and Edison P. de Freitas. 2017. Combining software-defined and delay-tolerant approaches in last-mile tactical edge networking. IEEE Communications Magazine 55, 10 (2017), 22–29. DOI:
    [13]
    Gabriel Martins Leal, Iulisloi Zacarias, Jorgito Matiuzzi Stocchero, and Edison Pignaton de Freitas. 2019. Empowering command and control through a combination of information-centric networking and software defined networking. IEEE Communications Magazine 57, 8 (2019), 48–55. DOI:
    [14]
    Jorgito Matiuzzi Stocchero, Andre Dexheimer Carneiro, Iulisloi Zacarias, and Edison Pignaton de Freitas. 2023. Combining information centric and software defined networking to support command and control agility in military mobile networks. Peer-to-Peer Network Applications 16 (2023), 765–784. DOI:
    [15]
    Jorgito Matiuzzi Stocchero, Carlos André Silva, Lauro de Souza Silva, Márcio Antônio Lawisch, Julio César S. dos Anjos, and Edison Pignaton de Freitas. 2023. Secure command and control for internet of battle things using novel network paradigms. IEEE Communications Magazine 61, 5 (2023), 166–172. DOI:
    [16]
    Hamza Noueihed, Heba Harb, and Joe Tekli. 2022. Knowledge-based virtual outdoor weather event simulator using unity 3D. The Journal of Supercomputing 78, 8 (2022), 10620–10655. DOI:
    [17]
    Alcardo Barakabitze, Tan Xiaoheng, and Guo Tan. 2014. A survey on naming, name resolution and data routing in information centric networking (ICN). IJARCCE 3 (102014), 2278–1021. DOI:
    [18]
    C. C. Sobin, Vaskar Raychoudhury, Gustavo Marfia, and Ankita Singla. 2016. A survey of routing and data dissemination in Delay Tolerant Networks. Journal of Network and Computer Applications 67 (2016), 128–146. DOI:
    [19]
    Wenfeng Xia, Yonggang Wen, Chuan Heng Foh, Dusit Niyato, and Haiyong Xie. 2015. A survey on software-defined networking. IEEE Communications Surveys Tutorials 17, 1 (2015), 27–51. DOI:
    [20]
    Kamal Benzekki, Abdeslam El Fergougui, and Abdelbaki El Belrhiti El Alaoui. 2017. Software-defined networking (SDN): A survey. Security and Communication Networks 9 (022017). DOI:
    [21]
    Wajid Rafique, Abdelhakim Senhaji Hafid, and Soumaya Cherkaoui. 2022. Complementing IoT services using software-defined information centric networks: A comprehensive survey. IEEE Internet of Things Journal 9, 23 (2022), 23545–23569. DOI:
    [22]
    Daniel A. Eisenberg, David L. Alderson, Maksim Kitsak, Alexander Ganin, and Igor Linkov. 2018. Network foundation for command and control (C2) systems: Literature review. IEEE Access 6 (2018), 68782–68794. DOI:
    [23]
    David S. Alberts and Richard E. Hayes. 2006. Understanding command and control.
    [24]
    Ross A. Pigeau and C. A. McCann. 2002. Re-conceptualizing command and control.
    [25]
    Linda Elmhadhbi, Mohamed-Hedi Karray, Bernard Archimède, J. Neil Otte, and Barry Smith. 2020. A semantics-based common operational command system for multiagency disaster response. IEEE Transactions on Engineering Management (2020), 1–15. DOI:
    [26]
    Waseem Al Aqqad and Xuewei Zhang. 2021. Modeling command and control systems in wildfire management: Characterization of and design for resiliency. In 2021 IEEE International Symposium on Technologies for Homeland Security (HST). 1–5. DOI:
    [27]
    S. Chan. 2019. Prototype resilient command and control (C2) of C2 architecture for power outage mitigation. In 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). 0779–0785. DOI:
    [28]
    David S. Alberts and Richard E. Hayes. 2003. Power to the edge: Command, control in the information age.
    [29]
    D. S. Alberts and et al.2013. SAS-085 final report on C2 agility. NATO Research and Technology Organization (2013). http://www.dodccrp.org/sas-085/
    [30]
    Col. Mark C. Boone. 2021. Decentralized decision making. Marine Corps Gazette (2021).
    [31]
    Heidi M. Tucholski. 2021. Future command and control: Closing the knowledge gaps. Air & Space Power Journal (062021).
    [32]
    Andrea Gilli. 2021. Future warfare, future skills, future professional military education. NDC Policy Brief (112021), 18–21.
    [33]
    Elio Mansour, Faisal Shahzad, Joe Tekli, and Richard Chbeir. 2020. Data redundancy management in connected environments(Q2SWinet’20). Association for Computing Machinery, New York, NY, USA, 75–80. DOI:
    [34]
    Hengameh Irandoust and Abder Benaskeur. 2020. Human-autonomy teaming for critical command and control functions. In 2020 IEEE International Conference on Human-Machine Systems (ICHMS). 1–6. DOI:
    [35]
    Rosario Simonetti and Paolo Tripodi. 2020. Automation and the future of command and control. The end of auftragstaktik? Journal of Advanced Military Studies 11 (062020). DOI:
    [36]
    Stephen Russell, Tarek Abdelzaher, and Niranjan Suri. 2019. Multi-domain effects and the internet of battlefield things. In MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM). IEEE, 724–730.
    [37]
    Xiaoke Jiang, Jun Bi, Guoshun Nan, and Zhaogeng Li. 2015. A survey on information-centric networking: Rationales, designs and debates. China Communications 12, 7 (2015), 1–12. DOI:
    [38]
    Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher, and Borje Ohlman. 2012. A survey of information-centric networking. IEEE Communications Magazine 50, 7 (2012), 26–36. DOI:
    [39]
    Bengt Ahlgren, Matteo D’Ambrosio, Ian Marsh, Christian Dannewitz, Börje Ohlman, Kostas Pentikousis, Ove Strandberg, René Rembarz, and Vinicio Vercellone. 2008. Design considerations for a network of information. 66. DOI:
    [40]
    Nikos Fotiou, Pekka Nikander, Dirk Trossen, and George C. Polyzos. 2012. Developing information networking further: From PSIRP to PURSUIT. In Broadband Communications, Networks, and Systems, Ioannis Tomkos, Christos J. Bouras, Georgios Ellinas, Panagiotis Demestichas, and Prasun Sinha (Eds.). Springer Berlin, Berlin, 1–13.
    [41]
    Marica Amadeo, Claudia Campolo, and Antonella Molinaro. 2016. Information-centric networking for connected vehicles: A survey and future perspectives. IEEE Communications Magazine 54, 2 (2016), 98–104. DOI:
    [42]
    Konstantinos V. Katsaros, Wei Koong Chai, Ning Wang, George Pavlou, Herman Bontius, and Mario Paolone. 2014. Information-centric networking for machine-to-machine data delivery: A case study in smart grid applications. IEEE Network 28, 3 (2014), 58–64. DOI:
    [43]
    Boubakr Nour, Kashif Sharif, Fan Li, Hassine Moungla, and Yang Liu. 2020. A unified hybrid information-centric naming scheme for IoT applications. Computer Communications 150 (2020), 103–114. DOI:
    [44]
    Hakima Khelifi, Senlin Luo, Boubakr Nour, and Hassine Moungla. 2019. LQCC: A link quality-based congestion control scheme in named data networks. In 2019 IEEE Wireless Communications and Networking Conference (WCNC). 1–6. DOI:
    [45]
    Guoqiang Zhang, Yang Li, and Tao Lin. 2013. Caching in information centric networking: A survey. Computer Networks 57, 16 (2013), 3128–3141. DOI:Information Centric Networking.
    [46]
    Chiara Boldrini, Marco Conti, and Andrea Passarella. 2008. Context and resource awareness in opportunistic network data dissemination. In 2008 International Symposium on a World of Wireless, Mobile and Multimedia Networks. 1–6. DOI:
    [47]
    David J. Israel, Betsy Edwards, Jeffrey Hayes, William Knopf, Alvin Robles, and Lena Braatz. 2019. The benefits of delay/disruption tolerant networking (DTN) for future NASA science missions. In International Astronautical Congress (IAC) 2019.
    [48]
    Amit Kumar Singh and Rajendra Pamula. 2021. Vehicular Delay Tolerant Network Based Communication Using Machine Learning Classifiers. Springer Singapore, Singapore, 195–208. DOI:
    [49]
    Amit Singh. 2021. An efficient and intelligent routing strategy for vehicular delay-tolerant networks. Wireless Networks 27 (012021). DOI:
    [50]
    Zahoor Ahmed, Muhammad Ayaz, Mohammed A. Hijji, Muhammad Zahid Abbas, and Aneel Rahim. 2022. AUV-based efficient data collection scheme for underwater linear sensor networks. Int. J. Semant. Web Inf. Syst. 18, 1 (Jul.2022), 1–19. DOI:
    [51]
    Sergio Palazzo, Andrew T. Campbell, and Marcelo Dias de Amorim. 2011. Opportunistic and delay-tolerant networks. EURASIP Journal on Wireless Communications and Networking 2011, 1 (2011). DOI:
    [52]
    J. David Brown, Mazda Salmanian, and Ming Li. 2014. Opportunistic situational awareness dissemination at the tactical edge. In 2014 IEEE Military Communications Conference. 1229–1237. DOI:
    [53]
    Amir Swidan, Sherif Khattab, Yasmine Abouelseoud, and Hassan Elkamchouchi. 2015. A secure geographical routing protocol for highly-dynamic aeronautical networks. In MILCOM 2015-2015 IEEE Military Communications Conference. 708–713. DOI:
    [54]
    Christian Schlegel, Xu Wang, Rongxi He, Bin Lin, and Ying Wang. 2015. Probabilistic routing based on two-hop information in delay/disruption tolerant networks. Journal of Electrical and Computer Engineering 2015 (2015). DOI:
    [55]
    David Kidston and Minghui Shi. 2012. Opportunistic routing in tactical networks. In 2012 IEEE International Conference on Communications (ICC). 328–333. DOI:
    [56]
    James F. Kurose and Keith W. Ross. 2016. Computer Networking: A Top-Down Approach (7 ed.). Pearson, Boston, MA.
    [57]
    Saad Haji, Subhi Zeebaree, Rezgar Saeed, Siddeeq Ameen, Hanan Shukur, Naaman Omar, Mohammed M. Sadeeq, Zainab Ageed, Ibrahim Mahmood, and Hajar Yasin. 2021. Comparison of software defined networking with traditional networking. Asian Journal of Computer Science and Information Technology 9 (052021), 1–18. DOI:
    [58]
    Danda B. Rawat and Swetha R. Reddy. 2017. Software defined networking architecture, security and energy efficiency: A survey. IEEE Communications Surveys Tutorials 19, 1 (2017), 325–346. DOI:
    [59]
    Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow: Enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev. 38, 2 (Mar.2008), 69–74. DOI:
    [60]
    Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker. 2014. P4: Programming protocol-independent packet processors. SIGCOMM Comput. Commun. Rev. 44, 3 (Jul.2014), 87–95. DOI:
    [61]
    Juliano Araujo Wickboldt, Wanderson Paim De Jesus, Pedro Heleno Isolani, Cristiano Bonato Both, Juergen Rochol, and Lisandro Zambenedetti Granville. 2015. Software-defined networking: Management requirements and challenges. IEEE Communications Magazine 53, 1 (2015), 278–285. DOI:
    [62]
    Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka, and Thierry Turletti. 2014. A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Communications Surveys Tutorials 16, 3 (2014), 1617–1634. DOI:
    [63]
    Seungwon Shin, Lei Xu, Sungmin Hong, and Guofei Gu. 2016. Enhancing network security through software defined networking (SDN). In 2016 25th International Conference on Computer Communication and Networks (ICCCN). 1–9. DOI:
    [64]
    Alexander Gelberger, Niv Yemini, and Ran Giladi. 2013. Performance analysis of software-defined networking (SDN). 389–393. DOI:
    [65]
    Murat Karakus and Arjan Durresi. 2016. A survey: Control plane scalability issues and approaches in software-defined networking (SDN). Computer Networks 112 (112016). DOI:
    [66]
    Laizhong Cui, F. Richard Yu, and Qiao Yan. 2016. When big data meets software-defined networking: SDN for big data and big data for SDN. IEEE Network 30, 1 (2016), 58–65. DOI:
    [67]
    Kai Wang, Hao Yin, Wei Quan, and Geyong Min. 2018. Enabling collaborative edge computing for software defined vehicular networks. IEEE Network 32, 5 (2018), 112–117. DOI:
    [68]
    Tulio Dapper e Silva, Carlos F. Emygdio de Melo, Pedro Cumino, Denis Rosário, Eduardo Cerqueira, and Edison Pignaton de Freitas. 2019. STFANET: SDN-based topology management for flying ad Hoc network. IEEE Access 7 (2019), 173499–173514. DOI:
    [69]
    Junfeng Xie, F. Richard Yu, Tao Huang, Renchao Xie, Jiang Liu, Chenmeng Wang, and Yunjie Liu. 2019. A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges. IEEE Communications Surveys Tutorials 21, 1 (2019), 393–430. DOI:
    [70]
    Abdullah Al Hayajneh, Md. Zakirul Alam Bhuiyan, and Ian McAndrew. 2020. Improving internet of things (IoT) security with software-defined networking (SDN). Computers 9 (022020), 8. DOI:
    [71]
    Lan Yushi, Jiang Fei, and Yu Hui. 2012. Study on application modes of military Internet of Things (MIOT). In 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE), Vol. 3. 630–634. DOI:
    [72]
    Xianli Li, Pan Wei, An Jianyong, and Wan Ping. 2020. The application research on military internet of things. In 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). 187–191. DOI:
    [73]
    K. Keerthana, R. Yamini, N. Dhesigan, N. Bala gangadharan, and Sp.Angeline kirubha. 2020. Smart lifeguarding vest for military purpose. In 2020 International Conference on Communication and Signal Processing (ICCSP). 637–639. DOI:
    [74]
    Chanakya Kumar and Hussain Falih Mahdi. 2017. A real time algorithm for the machine to machine communication-smart warrior system. In 2017 IEEE 13th Malaysia International Conference on Communications (MICC). 213–217. DOI:
    [75]
    Stephen Russell and Tarek Abdelzaher. 2018. The internet of battlefield things: The next generation of command, control, communications and intelligence (C3I) decision-making. In MILCOM 2018-2018 IEEE Military Communications Conference (MILCOM). 737–742. DOI:
    [76]
    Anton V. Uzunov, Surya Nepal, and Mohan Baruwal Chhetri. 2019. Proactive antifragility: A new paradigm for next-generation cyber defence at the edge. In 2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC). 246–255. DOI:
    [77]
    Williams-Paul Nwadiugwu, Chi-Yun Kim, Etobi Damian Tita, and Dong-Seong Kim. 2020. Tactical remodeling of unrecoverable packets in MIL-STD-1553 network-bus for industrial-IoBT. In 2020 International Conference on Information and Communication Technology Convergence (ICTC). 1814–1818. DOI:
    [78]
    Di Lin and Weiwei Wu. 2022. Heuristic algorithm for resource allocation in an internet of battle things. IEEE Systems Journal (2022), 1–12. DOI:
    [79]
    Lawrence Young and Mark Ishii. 2012. One force tactical communications system: Connecting the tactical edge at AEWE spiral G. In MILCOM 2012-2012 IEEE Military Communications Conference. 1–4. DOI:
    [80]
    Basudeb Bera, Ashok Kumar Das, Sahil Garg, Md. Jalil Piran, and M. Shamim Hossain. 2022. Access control protocol for battlefield surveillance in drone-assisted IoT environment. IEEE Internet of Things Journal 9, 4 (2022), 2708–2721. DOI:
    [81]
    Elnaz Limouchi and Imad Mahgoub. 2021. Reinforcement learning-assisted threshold optimization for dynamic honeypot adaptation to enhance IoBT networks security. In 2021 IEEE Symposium Series on Computational Intelligence (SSCI). 1–7. DOI:
    [82]
    Mohtasin Golam, Jae-Min Lee, and Dong-Seong Kim. 2020. A UAV-assisted blockchain based secure device-to-device communication in internet of military things. In 2020 International Conference on Information and Communication Technology Convergence (ICTC). 1896–1898. DOI:
    [83]
    Ragini Gupta, Klara Nahrstedt, Niranjan Suri, and Jeffrey Smith. 2021. SVAD: End-to-end sensory data analysis for IoBT-driven platforms. In 2021 IEEE 7th World Forum on Internet of Things (WF-IoT). 903–908. DOI:
    [84]
    Lisa Scott, Kelvin Marcus, Rommie Hardy, and Kevin Chan. 2016. Exploring dependencies of networks of multi-genre network experiments. In Military Communications Conference, MILCOM 2016-2016 IEEE. IEEE, 576–581.
    [85]
    Basil Etefia and Lixia Zhang. 2012. Named data networking for military communication systems. In 2012 IEEE Aerospace Conference. 1–7. DOI:
    [86]
    Mariann Hauge, Lars Landmark, Øivind Kure, and Johnsen Frank Trethan. 2019. Information-centric networking for mobile military networks. (2019). https://www.ffi.no/en/publications-archive/information-centric-networking-for-mobile-military-networks
    [87]
    Zhaoyang Du, Celimuge Wu, Tsutomu Yoshinaga, Xianfu Chen, Xiaoyan Wang, Kok-Lim Alvin Yau, and Yusheng Ji. 2021. A routing protocol for UAV-assisted vehicular delay tolerant networks. IEEE Open Journal of the Computer Society 2 (2021), 85–98. DOI:
    [88]
    Peng Li, Xing Wu, Wenfeng Shen, Weiqin Tong, and Song Guo. 2019. Collaboration of heterogeneous unmanned vehicles for smart cities. IEEE Network 33, 4 (2019), 133–137. DOI:
    [89]
    Baichuan Liu, Weikun Zhang, Wuhui Chen, Huawei Huang, and Song Guo. 2020. Online computation offloading and traffic routing for UAV swarms in edge-cloud computing. IEEE Transactions on Vehicular Technology 69, 8 (2020), 8777–8791. DOI:
    [90]
    Thomas Jonson, Jonah Pezeshki, Victor Chao, Kristofer Smith, and James Fazio. 2008. Application of delay tolerant networking (DTN) in Airborne Networks. In MILCOM 2008-2008 IEEE Military Communications Conference. 1–7. DOI:
    [91]
    Silvia Krug and Jochen Seitz. 2016. Challenges of applying DTN routing protocols in realistic disaster scenarios. In 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN). 784–789. DOI:
    [92]
    Bo Yang and Xiangyu Bai. 2019. A review of UAV ferry algorithms in delay tolerant network. In 2019 12th International Symposium on Computational Intelligence and Design (ISCID), Vol. 2. 94–98. DOI:
    [93]
    Edison Pignaton de Freitas, Tales Heimfarth, Flavio Rech Wagner, Carlos Eduardo Pereira, and Tony Larsson. 2013. Exploring geographic context awareness for data dissemination on mobile ad hoc networks. Ad Hoc Networks 11, 6 (2013), 1746–1764. DOI:
    [94]
    Vasileios Gkioulos, Håkon Gunleifsen, and Goitom Kahsay Weldehawaryat. 2018. A systematic literature review on military software defined networks. Future Internet 10, 9 (2018). https://www.mdpi.com/1999-5903/10/9/88
    [95]
    Md. Redowan Mahmud, Adel Nadjaran Toosi, Maria Alejandra Rodriguez, Sharat Chandra Madanapalli, Vijay Sivaraman, Len Sciacca, Christos Sioutis, and Rajkumar Buyya. 2020. Software-defined multi-domain tactical networks: Foundations and future directions. CoRR abs/2010.10509 (2020). arXiv:2010.10509https://arxiv.org/abs/2010.10509
    [96]
    Merlin von Rechenberg, Paulo H. L. Rettore, Roberto Rigolin F. Lopes, and Peter Sevenich. 2021. Software-defined networking applied in tactical networks: Problems, solutions and open issues. In 2021 International Conference on Military Communication and Information Systems (ICMCIS). 1–8. DOI:
    [97]
    Kévin Phemius, Jawad Seddar, Mathieu Bouet, Hicham Khalifé, and Vania Conan. 2016. Bringing SDN to the edge of tactical networks. In MILCOM 2016-2016 IEEE Military Communications Conference. 1047–1052. DOI:
    [98]
    Jon Spencer, Russell Taylor, and Robert Hancock. 2017. Evaluation of software-defined networking control plane performance in deployed military communications systems. In 2017 International Conference on Military Communications and Information Systems (ICMCIS). 1–7. DOI:
    [99]
    Mohammad Ashraful Hoque, Md. Razu, Thouhidul Islam, and Al Amin. 2020. SDN-DTN combined architecture in post disaster scenario – a new way to start. In 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). 230–235. DOI:
    [100]
    Zhiguo Liu, Jie Zhu, Chengsheng Pan, and Guangyue Song. 2018. Satellite network architecture design based on SDN and ICN technology. In 2018 8th International Conference on Electronics Information and Emergency Communication (ICEIEC). 124–131. DOI:
    [101]
    G. Siracusano, S. Salsano, P. L. Ventre, A. Detti, O. Rashed, and N. Blefari-Melazzi. 2018. A framework for experimenting ICN over SDN solutions using physical and virtual testbeds. Computer Networks 134 (2018), 245–259. DOI:
    [102]
    Huda Saadeh, Wesam Almobaideen, Khair Eddin Sabri, and Maha Saadeh. 2019. Hybrid SDN-ICN architecture design for the internet of things. In 2019 Sixth International Conference on Software Defined Systems (SDS). 96–101. DOI:
    [103]
    Yoshihiro Niitsu, Tsubasa Sakuma, and Hiroyuki Date. 2016. Power utilization efficiency improvement method for DTN using a message ferry. In 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN). 954–956. DOI:
    [104]
    Peter Kietzmann, José Alamos, Dirk Kutscher, Thomas C. Schmidt, and Matthias Wählisch. 2022. Delay-tolerant ICN and its application to LoRa. In Proceedings of the 9th ACM Conference on Information-Centric Networking (ICN’22). Association for Computing Machinery, New York, NY, USA, 125–136. DOI:
    [105]
    Guozhu Yan, Qiongyu Wu, Rongbing Chen, Linfeng Du, and Shuangyin Ren. 2022. A literature review of resiliency technologies in military software defined networks. In 2022 5th International Conference on Data Science and Information Technology (DSIT). 1–7. DOI:
    [106]
    Eryk Schiller, Chao Feng, Rafael Hengen Ribeiro, Francesco Marino, Martin Buck, and Burkhard Stiller. 2023. Demo: Utilizing SRv6 to optimize the routing behavior for tactical networks. In 2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM). 361–363. DOI:
    [107]
    Yiannis Papageorgiou, Merkouris Karaliopoulos, and Iordanis Koutsopoulos. 2022. Joint controller placement and TDMA link scheduling in SDN-enabled tactical MANETs. In MILCOM 2022-2022 IEEE Military Communications Conference (MILCOM). 125–132. DOI:
    [108]
    Klement Hagenhoff, Maximilian Tränkler, Corinna Schmitt, and Gabri Dreo Rodosek. 2022. RTC: Route to controller algorithm providing SDN capabilities in MANETs. In MILCOM 2022-2022 IEEE Military Communications Conference (MILCOM). 117–124. DOI:
    [109]
    Sharath Maligera Eswarappa, Paulo H. L. Rettore, Johannes Loevenich, Peter Sevenich, and Roberto Rigolin F. Lopes. 2021. Towards adaptive QoS in SDN-enabled heterogeneous tactical networks. In 2021 International Conference on Military Communication and Information Systems (ICMCIS). 1–8. DOI:
    [110]
    Paulo H. L. Rettore, Miodrag Djurica, Roberto Rigolin F. Lopes, Vinicius F. S. Mota, Eelco Cramer, Floris Drijver, and Johannes F. Loevenich. 2022. Towards software-defined tactical networks: Experiments and challenges for control overhead. In MILCOM 2022-2022 IEEE Military Communications Conference (MILCOM). 110–116. DOI:
    [111]
    University of California - Los Angeles. NDNSim. ([n. d.]). https://ndnsim.net/current/Accessed: 2022-05-15.
    [112]
    Zoltan Bojthe, Levente Meszaros, György Szászkő, Rudolf Hornig, Andras Varga, and Attila Török. INET Framework. ([n. d.]). https://inet.omnetpp.org/Accessed: 2022-05-15.
    [113]
    Amir Abane. NDNOMNeT. ([n. d.]). https://omnetpp.org/download-items/NDNOMNeT.htmlAccessed: 2022-05-15.
    [114]
    U.S. Naval Research Laboratory. The extendable mobile ad-hoc network emulator (EMANE). ([n. d.]). https://www.nrl.navy.mil/Our-Work/Areas-of-Research/Information-Technology/NCS/EMANE/Accessed: 2022-05-15.
    [115]
    National Aeronautics and Space Administration. DTN DevKit. ([n. d.]). https://www.mitre.org/download-nasas-dtn-development-kitAccessed: 2022-05-15.
    [116]
    Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A network in a laptop: Rapid prototyping for software-defined networks. Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks (012010), 19. DOI:
    [117]
    Karamjeet Kaur, Japinder Singh, and Navtej Ghumman. 2014. Mininet as software defined networking testing platform.
    [118]
    M. Peuster, H. Karl, and S. van Rossem. 2016. MeDICINE: Rapid prototyping of production-ready network services in multi-PoP environments. In 2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). 148–153. DOI:
    [119]
    Ramon R. Fontes, Samira Afzal, Samuel H. B. Brito, Mateus A. S. Santos, and Christian Esteve Rothenberg. 2015. Mininet-WiFi: Emulating software-defined wireless networks. In 2015 11th International Conference on Network and Service Management (CNSM). 384–389. DOI:
    [120]
    Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. 2009. The ONE simulator for DTN protocol evaluation. In SIMUTools’09: Proceedings of the 2nd International Conference on Simulation Tools and Techniques. ICST, New York, NY, USA. Accessed: 2022-05-15.
    [121]
    IRD. GAMA Platform Website. ([n. d.]). https://gama-platform.org/faqAccessed: 2022-05-15.
    [122]
    Uri Wilensky. 1999. NetLogo. (1999). http://ccl.northwestern.edu/netlogo/Accessed: 2022-05-15.
    [123]
    Michael J. North, Nicholson T. Collier, Jonathan Ozik, Eric R. Tatara, Charles M. Macal, Mark Bragen, and Pam Sydelko. 2013. Complex adaptive systems modeling with Repast Simphony. Complex Adaptive Systems Modeling 1 (2013), 3. Issue 1. DOI:
    [124]
    Marc Jaxa-Rozen and Jan H. Kwakkel. 2018. PyNetLogo: Linking NetLogo with Python. JASSS 21, 2 (2018).
    [125]
    Janaína Schwarzrock, Iulisloi Zacarias, Ana L. C. Bazzan, Ricardo Queiroz de Araujo Fernandes, Leonardo Henrique Moreira, and Edison Pignaton de Freitas. 2018. Solving task allocation problem in multi unmanned aerial vehicles systems using swarm intelligence. Engineering Applications of Artificial Intelligence 72 (2018), 10–20. DOI:
    [126]
    Junier Caminha Amorim, Vander Alves, and Edison Pignaton de Freitas. 2020. Assessing a swarm-GAP based solution for the task allocation problem in dynamic scenarios. Expert Systems with Applications 152 (2020), 113437. DOI:
    [127]
    Alessandro Zocco, Matteo D. Zocco, Antonella Greco, Salvatore Livatino, and Lucio Tommaso De Paolis. 2015. Touchless interaction for command and control in military operations. In Augmented and Virtual Reality, Lucio Tommaso De Paolis and Antonio Mongelli (Eds.). Springer International Publishing, Cham, 432–445.
    [128]
    Petr Stodola and Jan Mazal. 2017. Architecture of the advanced command and control system. In 2017 International Conference on Military Technologies (ICMT). 340–343. DOI:
    [129]
    Marica Amadeo, Claudia Campolo, and Antonella Molinaro. 2016. Information-centric networking for connected vehicles: A survey and future perspectives. IEEE Communications Magazine 54, 2 (2016), 98–104. DOI:
    [130]
    Luis Bastos, Germano Capela, Alper Koprulu, and Gerard Elzinga. 2021. Potential of 5G technologies for military application. In 2021 International Conference on Military Communication and Information Systems (ICMCIS). IEEE, 1–8.
    [131]
    Topi Tuukkanen, Seppo Yrjölä, and Marja Matinmikko-Blue. 2021. A systematic literature review: Is military cognitive radio system on the brink of the “valley of death”? IEEE Aerospace and Electronic Systems Magazine 36, 5 (2021), 16–23. DOI:
    [132]
    Rafael Kunst, Edison Pignaton, Ting Zhou, and Honglin Hu. 2020. Application of future 6G technology to support heavy data traffic in highly mobile networks. In 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH). 144–148. DOI:
    [133]
    Shubhani Aggarwal, Neeraj Kumar, and Sudeep Tanwar. 2021. Blockchain-envisioned UAV communication using 6G networks: Open issues, use cases, and future directions. IEEE Internet of Things Journal 8, 7 (2021), 5416–5441. DOI:
    [134]
    Carlos Felipe Emygdio de Melo, Tulio Dapper e Silva, Felipe Boeira, Jorgito Matiuzzi Stocchero, Alexey Vinel, Mikael Asplund, and Edison Pignaton de Freitas. 2021. UAVouch: A secure identity and location validation scheme for UAV-networks. IEEE Access 9 (2021), 82930–82946. DOI:
    [135]
    Manas Pradhan, Fahrettin Gökgöz, Nico Bau, and Daniel Ota. 2016. Approach towards application of commercial off-the-shelf Internet of Things devices in the military domain. In 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT). 245–250. DOI:
    [136]
    Kirill Zamanenko. 2015. How Ukrainian programmers increased the speed of artillery response by 40 times. url:https://web.archive.org/web/20201108112507/https://inforesist.org/kak-ukrainskie-programmisty-uvelichili-skorost-otveta-artillerii-v-40-raz/ (May2015).
    [137]
    Artur Plokšto and Andriej Demeško. 2017. Armaments used in the Ukrainian conflict 2014–2015. Security and Defence Quarterly 15, 2 (2017), 54–84. DOI:
    [138]
    Ben Kehoe, Sachin Patil, Pieter Abbeel, and Ken Goldberg. 2015. A survey of research on cloud robotics and automation. IEEE Transactions on Automation Science and Engineering 12, 2 (2015), 398–409.
    [139]
    Edison Pignaton de Freitas, Joanna Isabelle Olszewska, Joel Luís Carbonera, Sandro R. Fiorini, Alaa Khamis, Veera Ragavan, Marcos E. Barreto, Edson Prestes, Maki K. Habib, Signe Redfield, Abdelghani Chibani, Paulo Goncalves, Julita Bermejo-Alonso, Ricardo Sanz, Elisa Tosello, Alberto Olivares-Alarcos, Andrea Aparecida Konzen, João Quintas, and Howard Li. 2020. Ontological concepts for information sharing in cloud robotics. Journal of Ambient Intelligence and Humanized Computing (2020). DOI:
    [140]
    Sandro Rama Fiorini, Julita Bermejo-Alonso, Paulo Gonçalves, Edison Pignaton de Freitas, Alberto Olivares Alarcos, Joanna Isabelle Olszewska, Edson Prestes, Craig Schlenoff, S. Veera Ragavan, Signe Redfield, Bruce Spencer, and Howard Li. 2017. A suite of ontologies for robotics and automation [industrial activities]. IEEE Robotics Automation Magazine 24, 1 (2017), 8–11. DOI:
    [141]
    Barbara Maria Dunin-Keplicz and Rineke Verbrugge. 2010. Teamwork in Multi-Agent Systems: A Formal Approach (1st ed.). Wiley Publishing.

    Cited By

    View all
    • (2024)Dynamic Deployment and Control of an NDN Network for Military Multi-UAVs Based Surveillance Applications2024 International Conference on Unmanned Aircraft Systems (ICUAS)10.1109/ICUAS60882.2024.10556830(1018-1025)Online publication date: 4-Jun-2024

    Index Terms

    1. Surveying Emerging Network Approaches for Military Command and Control Systems

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Computing Surveys
        ACM Computing Surveys  Volume 56, Issue 6
        June 2024
        963 pages
        ISSN:0360-0300
        EISSN:1557-7341
        DOI:10.1145/3613600
        Issue’s Table of Contents

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 22 January 2024
        Online AM: 20 October 2023
        Accepted: 18 September 2023
        Revised: 03 September 2023
        Received: 11 October 2022
        Published in CSUR Volume 56, Issue 6

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. Command and control
        2. DTN
        3. ICN
        4. internet of battle things (IoBT)
        5. opportunistic network
        6. SDN

        Qualifiers

        • Survey

        Funding Sources

        • CAPES, Brazil - Finance Code 001
        • CNPq- Brazil
        • CEREIA Project
        • FAPESP MCTIC - CGI.BR

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)628
        • Downloads (Last 6 weeks)42
        Reflects downloads up to 11 Aug 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Dynamic Deployment and Control of an NDN Network for Military Multi-UAVs Based Surveillance Applications2024 International Conference on Unmanned Aircraft Systems (ICUAS)10.1109/ICUAS60882.2024.10556830(1018-1025)Online publication date: 4-Jun-2024

        View Options

        Get Access

        Login options

        Full Access

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        Full Text

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media