Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3626246.3653391acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article
Open access

Stage: Query Execution Time Prediction in Amazon Redshift

Published: 09 June 2024 Publication History

Abstract

Query performance (e.g., execution time) prediction is a critical component of modern DBMSes. As a pioneering cloud data warehouse, Amazon Redshift relies on an accurate execution time prediction for many downstream tasks, ranging from high-level optimizations, such as automatically creating materialized views, to low-level tasks on the critical path of query execution, such as admission, scheduling, and execution resource control. Unfortunately, many existing execution time prediction techniques, including those used in Redshift, suffer from cold start issues, inaccurate estimation, and are not robust against workload/data changes.
In this paper, we propose a novel hierarchical execution time predictor: the Stage predictor. The Stage predictor is designed to leverage the unique characteristics and challenges faced by Redshift. The Stage predictor consists of three model states: an execution time cache, a lightweight local model optimized for a specific DB instance with uncertainty measurement, and a complex global model that is transferable across all instances in Redshift. We design a systematic approach to use these models that best leverages optimality (cache), instance-optimization (local model), and transferable knowledge about Redshift (global model). Experimentally, we show that the Stage predictor makes more accurate and robust predictions while maintaining a practical inference latency and memory overhead. Overall, the Stage predictor can improve the average query execution latency by 20% on these instances compared to the prior query performance predictor in Redshift.

References

[1]
Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B. Zdonik. 2012. Learning-based Query Performance Modeling and Prediction. In IEEE 28th International Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia), 1--5 April, 2012, Anastasios Kementsietsidis and Marcos Antonio Vaz Salles (Eds.). IEEE Computer Society, 390--401. https://doi.org/10. 1109/ICDE.2012.64
[2]
Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017. Automatic Database Management System Tuning Through Large-scale Machine Learning. In Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14--19, 2017, Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu (Eds.). ACM, 1009--1024. https://doi.org/10.1145/3035918.3064029
[3]
Mennatallah Amer, Markus Goldstein, and Slim Abdennadher. 2013. Enhancing one-class support vector machines for unsupervised anomaly detection. In Proceedings of the ACM SIGKDD workshop on outlier detection and description. 8--15.
[4]
Bahareh Sadat Arab and Boris Glavic. 2017. Answering Historical What-if Queries with Provenance, Reenactment, and Symbolic Execution. In 9th USENIXWorkshop on the Theory and Practice of Provenance, TaPP 2017, Seattle, WA, USA, June 23, 2017, Adam Bates and Bill Howe (Eds.). USENIX Association. https://www. usenix.org/conference/tapp17/workshop-program/presentation/arab
[5]
Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish Gupta, Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy, Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Polychroniou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram Subramanian, and Doug Terry. 2022. Amazon Redshift Re-invented. In SIGMOD '22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 2205--2217. https://doi.org/10.1145/3514221.3526045
[6]
Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. 2019. Pyro: Deep universal probabilistic programming. The Journal of Machine Learning Research 20, 1 (2019), 973--978.
[7]
Jing Chen, Tiantian Du, and Gongyi Xiao. 2021. A multi-objective optimization for resource allocation of emergent demands in cloud computing. J. Cloud Comput. 10, 1 (2021), 20. https://doi.org/10.1186/s13677-021-00237--7
[8]
Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13--17, 2016, Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (Eds.). ACM, 785--794. https://doi.org/10.1145/ 2939672.2939785
[9]
Yun Chi, Hyun Jin Moon, Hakan Hacigümüs, and Jun'ichi Tatemura. 2011. SLAtree: a framework for efficiently supporting SLA-based decisions in cloud computing. In EDBT 2011, 14th International Conference on Extending Database Technology, Uppsala, Sweden, March 21--24, 2011, Proceedings, Anastasia Ailamaki, Sihem Amer- Yahia, Jignesh M. Patel, Tore Risch, Pierre Senellart, and Julia Stoyanovich (Eds.). ACM, 129--140. https://doi.org/10.1145/1951365.1951383
[10]
John W Coulston, Christine E Blinn, Valerie A Thomas, and Randolph H Wynne. 2016. Approximating prediction uncertainty for random forest regression models. Photogrammetric Engineering & Remote Sensing 82, 3 (2016), 189--197.
[11]
Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. 2010. Schism: a Workload-Driven Approach to Database Replication and Partitioning. Proc. VLDB Endow. 3, 1 (2010), 48--57. https://doi.org/10.14778/1920841.1920853
[12]
Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query Executions to Improve Index Recommendations. In Proceedings of the 2019 International Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM, 1241--1258. https://doi.org/10.1145/ 3299869.3324957
[13]
Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020. Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed Workloads. Proc. VLDB Endow. 14, 2 (2020), 74--86. https://doi.org/10.14778/ 3425879.3425880
[14]
Tony Duan, Anand Avati, Daisy Yi Ding, Khanh K. Thai, Sanjay Basu, Andrew Y. Ng, and Alejandro Schuler. 2020. NGBoost: Natural Gradient Boosting for Probabilistic Prediction. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13--18 July 2020, Virtual Event (Proceedings of Machine Learning Research, Vol. 119). PMLR, 2690--2700. http: //proceedings.mlr.press/v119/duan20a.html
[15]
Jennie Duggan, Olga Papaemmanouil, Ugur Çetintemel, and Eli Upfal. 2014. Contender: A Resource Modeling Approach for Concurrent Query Performance Prediction. In Proceedings of the 17th International Conference on Extending Database Technology, EDBT 2014, Athens, Greece, March 24--28, 2014, Sihem Amer-Yahia, Vassilis Christophides, Anastasios Kementsietsidis, Minos N. Garofalakis, Stratos Idreos, and Vincent Leroy (Eds.). OpenProceedings.org, 109--120. https://doi.org/10.5441/002/EDBT.2014.11
[16]
Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19--24, 2016 (JMLR Workshop and Conference Proceedings, Vol. 48), Maria-Florina Balcan and Kilian Q. Weinberger (Eds.). JMLR.org, 1050--1059. http://proceedings.mlr.press/v48/gal16.html
[17]
Sainyam Galhotra, Amir Gilad, Sudeepa Roy, and Babak Salimi. 2022. HypeR: Hypothetical Reasoning With What-If and How-To Queries Using a Probabilistic Causal Approach. In SIGMOD '22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 1598--1611. https://doi.org/10.1145/3514221. 3526149
[18]
Tilmann Gneiting and Matthias Katzfuss. 2014. Probabilistic forecasting. Annual Review of Statistics and Its Application 1 (2014), 125--151.
[19]
Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani. 2014. Probabilistic programming. In Future of Software Engineering Proceedings. 167--181.
[20]
Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan, Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian, Jingren Zhou, Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A Comprehensive Benchmark Evaluation. Proc. VLDB Endow. 15, 4 (2021), 752--765. https://doi.org/10.14778/3503585.3503586
[21]
Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for Out-of-the-box Learned Cost Prediction. Proc. VLDB Endow. 15, 11 (2022), 2361--2374. https://www.vldb.org/pvldb/vol15/p2361-hilprecht.pdf
[22]
Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from Queries! Proc. VLDB Endow. 13, 7 (2020), 992--1005. https://doi.org/10.14778/3384345. 3384349
[23]
Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass learned index. In Proceedings of the Third International Workshop on Exploiting Artificial Intelligence Techniques for Data Management, aiDM@SIGMOD 2020, Portland, Oregon, USA, June 19, 2020, Rajesh Bordawekar, Oded Shmueli, Nesime Tatbul, and Tin Kam Ho (Eds.). ACM, 5:1--5:5. https://doi.org/10.1145/3401071.3401659
[24]
Thomas N. Kipf and Max Welling. 2016. Semi-Supervised Classification with Graph Convolutional Networks. (2016). https://doi.org/10.48550/ARXIV.1609. 02907 Publisher: arXiv Version Number: 4.
[25]
Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The Case for Learned Index Structures. In Proceedings of the 2018 International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10--15, 2018, Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM, 489--504. https://doi.org/10.1145/3183713.3196909
[26]
Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4--9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 6402--6413. https://proceedings. neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
[27]
Jiexing Li, Arnd Christian König, Vivek R. Narasayya, and Surajit Chaudhuri. 2012. Robust Estimation of Resource Consumption for SQL Queries using Statistical Techniques. Proc. VLDB Endow. 5, 11 (2012), 1555--1566. https://doi.org/10.14778/ 2350229.2350269
[28]
Kun-Lun Li, Hou-Kuan Huang, Sheng-Feng Tian, and Wei Xu. 2003. Improving one-class SVM for anomaly detection. In Proceedings of the 2003 international conference on machine learning and cybernetics (IEEE Cat. No. 03EX693), Vol. 5. IEEE, 3077--3081.
[29]
Chenghao Lyu, Qi Fan, Fei Song, Arnab Sinha, Yanlei Diao,Wei Chen, Li Ma, Yihui Feng, Yaliang Li, Kai Zeng, and Jingren Zhou. 2022. Fine-Grained Modeling and Optimization for Intelligent Resource Management in Big Data Processing. Proc. VLDB Endow. 15, 11 (2022), 3098--3111. https://www.vldb.org/pvldb/vol15/p3098-lyu.pdf
[30]
Andrey Malinin, Bruno Mlodozeniec, and Mark J. F. Gales. 2020. Ensemble Distribution Distillation. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26--30, 2020. OpenReview.net. https://openreview.net/forum?id=BygSP6Vtvr
[31]
Andrey Malinin, Liudmila Prokhorenkova, and Aleksei Ustimenko. 2021. Uncertainty in Gradient Boosting via Ensembles. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3--7, 2021. OpenReview.net. https://openreview.net/forum?id=1Jv6b0Zq3qi
[32]
Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization Practical. In Proceedings of the 2021 International Conference on Management of Data (SIGMOD '21). China. https://doi.org/10.1145/3448016.3452838 Award: 'best paper award'.
[33]
Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned Query Optimizer. PVLDB 12, 11 (2019), 1705--1718.
[34]
Ryan Marcus and Olga Papaemmanouil. 2016. WiSeDB: A Learning-based Workload Management Advisor for Cloud Databases. Proc. VLDB Endow. 9, 10 (2016), 780--791. https://doi.org/10.14778/2977797.2977804
[35]
Ryan Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11 (2019), 1733--1746. https://doi.org/10.14778/3342263.3342646
[36]
Nicolai Meinshausen. 2006. Quantile Regression Forests. J. Mach. Learn. Res. 7 (2006), 983--999. http://jmlr.org/papers/v7/meinshausen06a.html
[37]
Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan Suciu. 2010. WHY SO? orWHY NO? Functional Causality for Explaining Query Answers. In Proceedings of the Fourth International VLDB workshop on Management of Uncertain Data (MUD 2010) in conjunction with VLDB 2010, Singapore, September 13, 2010 (CTIT Workshop Proceedings Series, Vol. WP10-04), Ander de Keijzer and Maurice van Keulen (Eds.). Centre for Telematics and Information Technology (CTIT), University of Twente, The Netherlands, 3--17. http://ewi1276.ewi.utwente. nl:3000/papers/MUD2010_whyso.pdf
[38]
Alexandra Meliou and Dan Suciu. 2012. Tiresias: the database oracle for how-to queries. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20--24, 2012, K. Selçuk Candan, Yi Chen, Richard T. Snodgrass, Luis Gravano, and Ariel Fuxman (Eds.). ACM, 337--348. https://doi.org/10.1145/2213836.2213875
[39]
Lucas Mentch and Giles Hooker. 2016. Quantifying Uncertainty in Random Forests via Confidence Intervals and Hypothesis Tests. J. Mach. Learn. Res. 17 (2016), 26:1--26:41. http://jmlr.org/papers/v17/14--168.html
[40]
Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad Plans by Bounding the Impact of Cardinality Estimation Errors. PVLDB 2, 1 (2009), 982--993. https://doi.org/10.14778/1687627.1687738
[41]
Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learning Multi-Dimensional Indexes. In Proceedings of the 2020 International Conference on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14--19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 985--1000. https://doi.org/10.1145/3318464.3380579
[42]
Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus, Sam Madden, Tim Kraska, and Mohammad Alizadeh. 2023. Robust Query Driven Cardinality Estimation under Changing Workloads. Proc. VLDB Endow. 16, 6 (2023), 1520--1533. https://doi.org/10.14778/3583140.3583164
[43]
Susana Nieva, Fernando Sáenz-Pérez, and Jaime Sánchez-Hernández. 2020. HRSQL: Extending SQL with hypothetical reasoning and improved recursion for current database systems. Inf. Comput. 271 (2020), 104485. https://doi.org/10. 1016/J.IC.2019.104485
[44]
Jakub Nowotarski and Rafal Weron. 2018. Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renewable and Sustainable Energy Reviews 81 (2018), 1548--1568.
[45]
Adeola Ogunleye and Qing-GuoWang. 2020. XGBoost Model for Chronic Kidney Disease Diagnosis. IEEE ACM Trans. Comput. Biol. Bioinform. 17, 6 (2020), 2131-- 2140. https://doi.org/10.1109/TCBB.2019.2911071
[46]
Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang, Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. 2018. Quickstep: A Data Platform Based on the Scaling-Up Approach. Proc. VLDB Endow. 11, 6 (2018), 663--676. https://doi.org/10.14778/3184470.3184471
[47]
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2011. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12 (Nov. 2011), 2825--2830. http://dl.acm.org/citation.cfm?id=1953048.2078195
[48]
Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin. 2018. CatBoost: unbiased boosting with categorical features. In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3--8, 2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (Eds.). 6639--6649. https://proceedings.neurips.cc/paper/2018/hash/ 14491b756b3a51daac41c24863285549-Abstract.html
[49]
Harry V Roberts. 1965. Probabilistic prediction. J. Amer. Statist. Assoc. 60, 309 (1965), 50--62.
[50]
Gaurav Saxena, Mohammad Rahman, Naresh Chainani, Chunbin Lin, George Caragea, Fahim Chowdhury, Ryan Marcus, Tim Kraska, Ippokratis Pandis, and Balakrishnan (Murali) Narayanaswamy. 2023. Auto-WLM: Machine Learning Enhanced Workload Management in Amazon Redshift. In Companion of the 2023 International Conference on Management of Data, SIGMOD/PODS 2023, Seattle, WA, USA, June 18--23, 2023, Sudipto Das, Ippokratis Pandis, K. Selçuk Candan, and Sihem Amer-Yahia (Eds.). ACM, 225--237. https://doi.org/10.1145/3555041. 3589677
[51]
Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2008. The graph neural network model. IEEE transactions on neural networks 20, 1 (2008), 61--80.
[52]
Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator. Proc. VLDB Endow. 13, 3 (2019), 307--319. https://doi.org/10.14778/3368289.3368296
[53]
Rebecca Taft, Willis Lang, Jennie Duggan, Aaron J. Elmore, Michael Stonebraker, and David J. DeWitt. 2016. STeP: Scalable Tenant Placement for Managing Database-as-a-Service Deployments. In Proceedings of the Seventh ACM Symposium on Cloud Computing, Santa Clara, CA, USA, October 5--7, 2016, Marcos K. Aguilera, Brian Cooper, and Yanlei Diao (Eds.). ACM, 388--400. https: //doi.org/10.1145/2987550.2987575
[54]
Laurent Torlay, Marcela Perrone-Bertolotti, Elizabeth Thomas, and Monica Baciu. 2017. Machine learning-XGBoost analysis of language networks to classify patients with epilepsy. Brain Informatics 4, 3 (2017), 159--169. https://doi.org/10. 1007/S40708-017-0065--7
[55]
Sean Tozer, Tim Brecht, and Ashraf Aboulnaga. 2010. Q-Cop: Avoiding bad query mixes to minimize client timeouts under heavy loads. In Proceedings of the 26th International Conference on Data Engineering, ICDE 2010, March 1--6, 2010, Long Beach, California, USA, Feifei Li, Mirella M. Moro, Shahram Ghandeharizadeh, Jayant R. Haritsa, Gerhard Weikum, Michael J. Carey, Fabio Casati, Edward Y. Chang, Ioana Manolescu, Sharad Mehrotra, Umeshwar Dayal, and Vassilis J. Tsotras (Eds.). IEEE Computer Society, 397--408. https://doi.org/10.1109/ICDE. 2010.5447850
[56]
Immanuel Trummer, Samuel Moseley, Deepak Maram, Saehan Jo, and Joseph Antonakakis. 2018. SkinnerDB: Regret-bounded Query Evaluation via Reinforcement Learning. PVLDB 11, 12 (2018), 2074--2077. https://doi.org/10.14778/ 3229863.3236263
[57]
Benjamin Wagner, André Kohn, and Thomas Neumann. 2021. Self-Tuning Query Scheduling for Analytical Workloads. In SIGMOD '21: International Conference on Management of Data, Virtual Event, China, June 20--25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 1879--1891. https: //doi.org/10.1145/3448016.3457260
[58]
B. P. Welford. 1962. Note on a Method for Calculating Corrected Sums of Squares and Products. Technometrics 4, 3 (1962), 419--420. https://doi.org/10.1080/00401706.1962.10490022 arXiv:https://www.tandfonline.com/doi/pdf/10.1080/00401706.1962.10490022
[59]
Andrew Gordon Wilson and Pavel Izmailov. 2020. Bayesian Deep Learning and a Probabilistic Perspective of Generalization. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6--12, 2020, virtual, Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/ 322f62469c5e3c7dc3e58f5a4d1ea399-Abstract.html
[60]
Lucas Woltmann, Jerome Thiessat, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. 2023. FASTgres: Making Learned Query Optimizer Hinting Effective. Proceedings of the VLDB Endowment 16, 11 (Aug. 2023), 3310--3322. https://doi.org/10.14778/3611479.3611528
[61]
Fei Wu, Xiao-Yuan Jing, Pengfei Wei, Chao Lan, Yimu Ji, Guo-Ping Jiang, and Qinghua Huang. 2022. Semi-supervised multi-viewgraph convolutional networks with application to webpage classification. Inf. Sci. 591 (2022), 142--154. https: //doi.org/10.1016/J.INS.2022.01.013
[62]
Wentao Wu, Yun Chi, Shenghuo Zhu, Jun'ichi Tatemura, Hakan Hacigümüs, and Jeffrey F. Naughton. 2013. Predicting query execution time: Are optimizer cost models really unusable?. In 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8--12, 2013, Christian S. Jensen, Christopher M. Jermaine, and Xiaofang Zhou (Eds.). IEEE Computer Society, 1081--1092. https://doi.org/10.1109/ICDE.2013.6544899
[63]
Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, and Samuel Madden. 2023. FactorJoin: A New Cardinality Estimation Framework for Join Queries. Proc. ACM Manag. Data 1, 1 (2023), 41:1--41:27. https://doi.org/10.1145/ 3588721
[64]
Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam Mittal, Michael Luo, and Ion Stoica. 2022. Balsa: Learning a Query Optimizer Without Expert Demonstrations. In Proceedings of the 2022 International Conference on Management of Data (SIGMOD '22). Association for Computing Machinery, New York, NY, USA, 931--944. https://doi.org/10.1145/3514221.3517885
[65]
Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc. VLDB Endow. 14, 1 (2020), 61--73. https://doi.org/10.14778/3421424.3421432
[66]
Chi Zhang, Ryan Marcus, Anat Kleiman, and Olga Papaemmanoui l. 2020. Buffer Pool Aware Query Scheduling via Deep Reinforc ement Learning. In 2nd International Workshop on Applied AI for Datab ase Systems and Applications (AIDB@VLDB '20), Bingsheng He, Berthold Reinwald, and Yingjun Wu (Eds.). Tokyo, Japan. https://drive.google.com/file/d/1trNYAcQ3S71SHu5dbtkBR2hjcKVWFSx/view?usp=sharing
[67]
Dahai Zhang, Liyang Qian, Baijin Mao, Can Huang, Bin Huang, and Yulin Si. 2018. A Data-Driven Design for Fault Detection of Wind Turbines Using Random Forests and XGboost. IEEE Access 6 (2018), 21020--21031. https://doi.org/10.1109/ACCESS.2018.2818678
[68]
Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. 2020. Query performance prediction for concurrent queries using graph embedding. Proceedings of the VLDB Endowment 13, 9 (2020), 1416--1428.
[69]
Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian, Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method for Cardinality Estimation. Proc. VLDB Endow. 14, 9 (2021), 1489--1502. https://doi.org/10.14778/3461535.3461539

Cited By

View all
  • (2024)Hit the Gym: Accelerating Query Execution to Efficiently Bootstrap Behavior Models for Self-Driving Database Management SystemsProceedings of the VLDB Endowment10.14778/3681954.368203017:11(3680-3693)Online publication date: 1-Jul-2024
  • (2024)Blueprinting the Cloud: Unifying and Automatically Optimizing Cloud Data Infrastructures with BRADProceedings of the VLDB Endowment10.14778/3681954.368202617:11(3629-3643)Online publication date: 1-Jul-2024
  • (2024)The Holon Approach for Simultaneously Tuning Multiple Components in a Self-Driving Database Management System with Machine Learning via Synthesized Proto-ActionsProceedings of the VLDB Endowment10.14778/3681954.368200717:11(3373-3387)Online publication date: 30-Aug-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMOD/PODS '24: Companion of the 2024 International Conference on Management of Data
June 2024
694 pages
ISBN:9798400704222
DOI:10.1145/3626246
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 June 2024

Check for updates

Author Tags

  1. AWS redshift
  2. query performance prediction

Qualifiers

  • Research-article

Conference

SIGMOD/PODS '24
Sponsor:

Acceptance Rates

Overall Acceptance Rate 785 of 4,003 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)806
  • Downloads (Last 6 weeks)116
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Hit the Gym: Accelerating Query Execution to Efficiently Bootstrap Behavior Models for Self-Driving Database Management SystemsProceedings of the VLDB Endowment10.14778/3681954.368203017:11(3680-3693)Online publication date: 1-Jul-2024
  • (2024)Blueprinting the Cloud: Unifying and Automatically Optimizing Cloud Data Infrastructures with BRADProceedings of the VLDB Endowment10.14778/3681954.368202617:11(3629-3643)Online publication date: 1-Jul-2024
  • (2024)The Holon Approach for Simultaneously Tuning Multiple Components in a Self-Driving Database Management System with Machine Learning via Synthesized Proto-ActionsProceedings of the VLDB Endowment10.14778/3681954.368200717:11(3373-3387)Online publication date: 30-Aug-2024
  • (2024)Low Rank Approximation for Learned Query OptimizationProceedings of the Seventh International Workshop on Exploiting Artificial Intelligence Techniques for Data Management10.1145/3663742.3663974(1-5)Online publication date: 14-Jun-2024

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media