Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3626246.3654682acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
tutorial
Open access

Cognitive Psychology Meets Data Management: State of the Art and Future Directions

Published: 09 June 2024 Publication History

Abstract

Data definition and data manipulation language platforms of a DBMS are oftenhuman-centric. For instance, declarative queries are often formulated by humans or their results are directly consumed by humans. Consequently, superior and effective design of these platforms needs to be informed by theories fromcognitive psychology, a branch of psychology that studies how individuals think and process information. In this tutorial, we review and summarize the state of the art in the emerging paradigm ofpsychology theory-informed design ofhuman-centric components of a DBMS. In this paradigm, the design of the human-centric components is guided by theories from cognitive psychology in addition to theories from computer science. We review techniques and frameworks that embrace this paradigm in the arena of database querying. To guide future work in this arena, the tutorial proposes open problems and new research directions.

Supplemental Material

MP4 File
An overview of the tutorial on cognitive psychology meets data management.

References

[1]
Gestalt psychology. https://en.wikipedia.org/wiki/Gestalt_psychology.
[2]
P. D. Adamczyk, B. P. Bailey. If not now, when? The effects of interruptions at different moments within task execution. In CHI, 2004.
[3]
A. Ahadi, J. C. Prior, V. Behbood, R. Lister. Students' Semantic Mistakes inWriting Seven Different Types of SQL Queries. In ITiCSE, 2016.
[4]
A. Ahadi, V. Behbood, A. Vihavainen, J. C. Prior, R. Lister. Students' Syntactic Mistakes in Writing Seven Different Types of SQL Queries and its Application to Predicting Students' Success. In SIGCSE, 2016.
[5]
A. Amarilli, M. Monet. Enumerating Regular Languages with Bounded Delay. arXiv:2209.14878, 2022.
[6]
T. Armstrong and B. Detweiler-Bedel. Beauty as an Emotion: the Exhilarating Prospect of Mastering a Challenging World. Review of General Psychology, 12, 4, 305--329, 2008.
[7]
S. E. Asch. Effects of group pressure upon the modification and distortion of judgements, Organizational influence processes, pp. 295--303, 1951.
[8]
B. P. Bailey, J. A. Konstan. On the Need for Attention Aware Systems: Measuring Effects of Interruption on Task Performance, Error Rate, and Affective State. In Journal of Computers in Human Behavior, 22(4), 2006.
[9]
D. E. Berlyne. Conflict, arousal, and curiosity. McGraw-Hill, 1960.
[10]
D. Berlyne. Studies in the new Experimental Aesthetics. Washington D.C., Hemisphere Pub. Corp., 1974.
[11]
S. S. Bhowmick, B. Choi: Data-driven Visual Query Interfaces for Graphs: Past, Present, and (Near) Future. In SIGMOD, 2022.
[12]
S. S Bhowmick, H. Li, S. H. A. Chen, Y. Zhao. Social Psychology Meets Social Computing: State of the Art and Future Directions. In the ACM Web Conference, Singapore, May 2024
[13]
S. S. Bhowmick, B. Choi. Plug-and-Play Visual Subgraph Query Interfaces. Synthesis Lectures on Data Management, Springer, ISBN 978--3-031--16162--9, Mar 2023.
[14]
S. S. Bhowmick, C. E. Dyreson, B. Choi, M.-H. Ang. Interruption-Sensitive Empty Result Feedback: Rethinking the Visual Query Feedback Paradigm for Semistructured Data. In ACM CIKM, 2015.
[15]
S. S. Bhowmick, K. Huang, H. E. Chua, Z. Yuan, B. Choi, S. Zhou. AURORA: Data-driven Construction of Visual Graph Query Interfaces for Graph Databases. In SIGMOD, 2020.
[16]
S. Bykau, F. Korn, D. Srivastava, Y. Velegrakis. Fine-grained controversy detection in Wikipedia. In ICDE, 2015.
[17]
M. Correl, M. Gleicher. The Semantics of Sketch: Flexibility in Visual Query Systems for Time Series Data. In 2016 IEEE Conference on Visual Analytics Science and Technology (VAST), 131--140, IEEE CS, 2016.
[18]
M. Craig. Memory and Forgetting. Encyclopedia of Behavioral Neuroscience, 2nd ed., 2022.
[19]
V. Dadvar, L. Golab, D. Srivastava. Exploring data using patterns: A survey. Information Systems. 108: 101985, 2022.
[20]
C. Fan, K. Matkovic, H. Hauser. Sketch-Based Fast and Accurate Querying of Time Series Using Parameter-Sharing LSTM Networks. IEEE Trans. Vis. Comput. Graph., 27(12),4495--4506, IEEE CS, 2021.
[21]
W. Gatterbauer, C. Dunne, H. V. Jagadish, M. Riedewald. Principles of Query Visualization. IEEE Data Engineering Bulletin, 45(3), September 2022.
[22]
T. Gillie, D. Broadbent. What makes Interruption Disruptive? A Study of Length, Similarity and Complexity. Psychological Research, 50(4), 1989.
[23]
D. Groome. An Introduction to Cognitive Psychology: Processes and Disorders. Taylor & Francis Group, Fourth Ed, 2021.
[24]
S. Harper, C. Jay, E. Michailidou, H. Quan. Analysing the Visual Complexity of Web Pages using Document Structure. Behaviour & Information Technology, 32(5), 2013.
[25]
W. Huang, P. Eades, S.-H. Hong. Measuring Effectiveness of Graph Visualizations: A Cognitive Load Perspective. Information Visualization 8(3), 2009.
[26]
K. Huang, H.-E. Chua, S. S. Bhowmick, B. Choi, S. Zhou. CATAPULT: data-driven selection of canned patterns for efficient visual graph query formulation. In SIGMOD, 2019.
[27]
S. Idreos, O. Papaemmanouil, S. Chaudhuri. Overview of Data Exploration Techniques. In SIGMOD, 2015.
[28]
S. T. Iqbal, B. P. Bailey. Effects of Intelligent Notification Management on Users and Their Tasks. In CHI, 2008.
[29]
S. T. Iqbal, B. P. Bailey. Investigating the effectiveness of mental workload as a predictor of opportune moments for interruption. In CHI, 2005.
[30]
Y. Kobayashi, K. Kurita, K. Wasa. Linear-Delay Enumeration for Minimal Steiner Problems. In PODS, 2022.
[31]
D.J.L. Lee, J. Lee, T. Siddiqui, J. Kim, K. Karahalios, A.G. Parameswaran. You Can't Always Sketch What you Want: Understanding Sensemaking in Visual Query Systems. IEEE Trans. Vis. Comput. Graph., 26(1): 1267--1277, 2020.
[32]
G. Luo. Automatic Detection of Empty-result Queries. In VLDB, 2006.
[33]
J. Ma, S. S. Bhowmick, B. Choi, L. Tay. Theories and Principles Matter: Towards Visually Appealing and Effective Abstraction of Property Graph Queries. In SIGMOD, 2023.
[34]
J. Ma, S. S. Bhowmick, L. Tay, B. Choi. SIERRA: A Counterfactual Thinking-based Visual Interface for Property Graph Query Construction. In SIGMOD, 2024.
[35]
M. Mannino, A. Abouzied. Expressive Time Series Querying with Hand-drawn Scale-free Sketches. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1--13, ACM, 2018.
[36]
D. S. McCrickard, C. M. Chewar. Attuning notification design to user goals and attention costs. CACM, 46(3), 2003.
[37]
N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan. A Survey on Bias and Fairness in Machine Learning. ACM Comput. Surv., 54(6), 2022.
[38]
D. Miedema, G. Fletcher. SQLVis: Visual Query Representations for Supporting SQL Learners. In VL/HCC, 2021.
[39]
D. Miedema, E. Aivaloglou, G. Fletcher. Identifying SQL Misconceptions of Novices: Findings from a Think-Aloud Study. In ICER, 2021.
[40]
A. Miniukovich, A. De Angeli. Quantification of Interface Visual Complexity. In AVI, 2014.
[41]
A. Miniukovich, A. De Angeli. Computation of Interface Aesthetics. In CHI, 2015.
[42]
A. Miniukovich, S. Sulpizio, A. De Angeli. Visual complexity of graphical user interfaces. In AVI, 2018.
[43]
C. A. Monk, D. A. Boehm-Davis, J. G. Trafton. The Attentional Costs of Interrupting Task Performance at Various Stages. In Proc of the Human Factors and Ergonomics Society, 2002.
[44]
C. A. Monk, J. G. Trafton, D. A. Boehm-Davis. The effect of interruption duration and demand on resuming suspended goals. J. of Experimental Psychology: Applied, 14, 2008.
[45]
D. Mottin, et al. A Probabilistic Optimization Framework for the Empty-Answer Problem. In PVLDB, 6(14), 2013.
[46]
R. S. Nickerson. Confirmation bias: A ubiquitous phenomenon in many guises, Rev. Gen. Psychol., 2(2), 1998.
[47]
W. C. Ogden, S. R. Brooks. Query languages for the casual user: Exploring the middle ground between formal and natural languages. In CHI, 1983.
[48]
A. Oulasvirta, K. Hornbaek. Counterfactual Thinking: What Theories Do in Design. Int. Journal of Human-Computer Interaction, 38(1), 2022.
[49]
D. Pham, S. S. Bhowmick. VOYAGER: Automatic Computation of Visual Complexity and Aesthetics of Graph Query Interfaces. In EDBT, 2023.
[50]
D. Pessach, E. Shmueli. A Review on Fairness in Machine Learning. ACM Comput. Surv., 55(3), 2023.
[51]
P. Pirolli and S. Card. The Sensemaking Process and Leverage Points for Analyst Technology as Identified through Cognitive Task Analysis. In Proc. of Int. Conf. on Intelligence Analysis, 2005.
[52]
R. Reber. Processing Fluency, Aesthetic Pleasure, and Culturally Shared Taste. In Aesthetic Science: Connecting Minds, Brains, and Experience, 2012.
[53]
A. S. Reber. Gestalt psychology. The Penguin Dictionary of Psychology, Viking, ISBN 9780670801367, 1985.
[54]
P. Reisner. Use of Psychological Experimentation as an Aid to Development of a Query Language. IEEE Trans. Software Eng., 3(3): 218--229, 1977.
[55]
A. Sevim, A. Eldawy. HQ-Filter: Hierarchy-Aware Filter For Empty-Resulting Queries in Interactive Exploration. In MDM, 2021.
[56]
N. B. Shah, Z. C. Lipton. SIGMOD 2020 Tutorial on Fairness and Bias in Peer Review and Other Sociotechnical Intelligent Systems. In SIGMOD, 2020.
[57]
S. Sun, Q. Luo. In-memory subgraph matching: An in-depth study. In SIGMOD, 2020.
[58]
J. Sweller. Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2):257--285, 1988.
[59]
T. Taipalus. The effects of database complexity on SQL query formulation. J. Syst. Softw., 2020.
[60]
A. N. Tuch, E. E. Presslaber, M. Stocklin, K. Opwis, J. A. Bargas-Avila. The Role of Visual Complexity and Prototypicality Regarding First Impression of Websites: Working Towards Understanding Aesthetic Judgments. International Journal of Human-Computer Studies, 70, 2012.
[61]
D. De Waard. The measurement of drivers' mental workload. Groningen University, Traffic Research Center Netherlands, 1996.
[62]
L. Yan, N. Xu, G. Li, S. S Bhowmick, B. Choi, J. Xu. SENSOR: Data-driven Construction of Sketch-based Visual Query Interfaces for Time Series Data. In PVLDB, 15(12), 2022.
[63]
L. Ye, E. Keogh. Time series shapelets: a newprimitive for datamining. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 947--956, ACM, 2009.
[64]
P. Yi, B. Choi, S. S. Bhowmick, J. Xu. AutoG: A Visual Query Autocompletion Framework for Graph Databases. In The VLDB Journal, 2017.
[65]
V. Yoghourdjian, D. Archambault, S. Diehl, T. Dwyer, K. Klein, H. C. Purchase, and H.-Y Wu. Exploring the Limits of Complexity: A Survey of Empirical Studies on Graph Visualization. Visual Informatics 2(4), 2018.
[66]
V. Yoghourdjian, Y. Yang, T. Dwyer, L. Lee, M. Wybrow, K. Marriott. Scalability of Network Visualisation from a Cognitive Load Perspective. IEEE Trans. Vis. Comput. Graph., 27(2): 1677--1687, 2021.
[67]
Z. Yuan, H.-E. Chua, S. S. Bhowmick, Z. Ye, W.-S. Han, B. Choi. Towards Plug and- play Visual Graph Query Interfaces: Data-driven Canned Pattern Selection for Large Networks. PVLDB, 14(11), 2021.
[68]
Z. Yuan, H.-E. Chua, S. S. Bhowmick, Z. Ye, B. Choi, W.-S. Han. PLAYPEN: Plug and- Play Visual Graph Query Interfaces for Top-down and Bottom-Up Search on Large Networks. In SIGMOD, 2022.
[69]
P. Zimbardo, R. Johnson, V. McCann. Psychology Core Concepts. Pearson Education, Inc., 8th Edition, 2016.

Index Terms

  1. Cognitive Psychology Meets Data Management: State of the Art and Future Directions

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      SIGMOD/PODS '24: Companion of the 2024 International Conference on Management of Data
      June 2024
      694 pages
      ISBN:9798400704222
      DOI:10.1145/3626246
      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 09 June 2024

      Check for updates

      Author Tags

      1. cognitive psychology
      2. database querying
      3. human-centric
      4. psychology theory-informed design

      Qualifiers

      • Tutorial

      Conference

      SIGMOD/PODS '24
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 785 of 4,003 submissions, 20%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 275
        Total Downloads
      • Downloads (Last 12 months)275
      • Downloads (Last 6 weeks)57
      Reflects downloads up to 25 Dec 2024

      Other Metrics

      Citations

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media