Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Analysis of Product Architectures of Pin Array Technologies for Tactile Displays

Published: 01 November 2023 Publication History

Abstract

Refreshable tactile displays based on pin array technologies have a significant impact on the education of children with visual impairments, but they are prohibitively expensive. To better understand their design and the reason for the high cost, we created a database and analyzed the product architectures of 67 unique pin array technologies from literature and patents. We qualitatively coded their functional elements and analyzed the physical parts that execute the functions. Our findings highlight that pin array surfaces aim to achieve three key functions, i.e., raise and lower pins, lock pins, and create a large array. We also contribute a concise morphological chart that organises the various mechanisms for these three functions. Based on this, we discuss the reasons for the high cost and complexity of these surface haptic technologies and infer why larger displays and more affordable devices are not available. Our findings can be used to design new mechanisms for more affordable and scalable pin array display systems.

Supplementary Material

Video (iss23main-p5899-p-video.mp4)
This is the presentation video of our paper which will be presented at ISS 2023. The video presents key visuals supporting the paper, the methods and details of our findings.

References

[1]
Yoseph Bar-Cohen (ed.). 2004. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition. SPIE, 1000 20th Street, Bellingham, WA 98227-0010 USA. https://doi.org/10.1117/3.547465
[2]
Yoseph Bar-Cohen. 2010. Refreshable Braille displays using EAP actuators. 764206. https://doi.org/10.1117/12.844698
[3]
Mohamed Benali-Khoudja, M. Hafez, Jean-Marc Alexandre, and Abderrahmane Kheddar. 2004. Tactile Interfaces: a State-of-the-Art Survey. Information Systems Research-ISR.
[4]
Nadine Besse, Samuel Rosset, Juan José Zárate, Elisabetta Ferrari, Luca Brayda, and Herbert Shea. 2018. Understanding Graphics on a Scalable Latching Assistive Haptic Display Using a Shape Memory Polymer Membrane. IEEE Transactions on Haptics 11, 1 : 30-38. https://doi.org/10.1109/TOH. 2017.2767049
[5]
Nadine Besse, Samuel Rosset, Juan Jose Zarate, and Herbert Shea. 2017. Flexible Active Skin: Large Reconfigurable Arrays of Individually Addressed Shape Memory Polymer Actuators. Advanced Materials Technologies 2, 10 : 1700102. https://doi.org/10.1002/admt.201700102
[6]
Nadine Besse, Juan Josë Zarate, Samuel Rosset, and Herbert Shea. 2019. Device having a plurality of latching micro-actuators and method of operating the same.
[7]
T. Bhatnagar, N. Marquardt, M. Miodownik, and C. Holloway. 2021. Transforming a Monolithic Sheet of Nitinol into a Passive Reconfigurable Tactile Pixel Array Display at Braille Resolution. In: 2021 IEEE World Haptics Conference (WHC). (pp. pp. 409-414 ). IEEE ( 2021 ) (In press)., 409-414. Retrieved August 5, 2021 from https://ieeexplore.ieee.org/xpl/conhome/1001635/all-proceedings
[8]
Shantonu Biswas and Yon Visell. 2019. Emerging Material Technologies for Haptics. Advanced Materials Technologies 4, 4 : 1900042. https://doi.org/10.1002/admt.201900042
[9]
C. Bolzmacher, G. Changeon, V. Plaud, S. Roselier, J. Lozada, and M. Hafez. 2011. Tactile refreshable screen based on magneto-rheological fluids for map exploration and navigation tasks. In Smart Sensors, Actuators, and MEMS V, 560-569. https://doi.org/10.1117/12.886982
[10]
Adrian Bowles, Ahmed Rahman, Tim Jarman, Paul Morris, and Jon Gore. 2005. A new technology for high density actuator arrays. In Smart Structures and Materials 2005: Smart Structures and Integrated Systems, 680-689. https://doi.org/10.1117/12.598455
[11]
Luca Brayda, Fabrizio Leo, Caterina Baccelliere, Claudia Vigini, and Elena Cocchi. 2019. A Refreshable Tactile Display Effectively Supports Cognitive Mapping Followed by Orientation and Mobility Tasks: A Comparative Multi-modal Study Involving Blind and Low-vision Participants. In Proceedings of the 2nd Workshop on Multimedia for Accessible Human Computer Interfaces (MAHCI '19), 9-15. https://doi.org/10.1145/3347319.3356840
[12]
W. Brenner, S. Mitic, R. Ouchkalov, G. Popovic, A. Vujanic, and R. Medek. 2000. Development of microactuators for tactile graphic displays (State of the art and recent efforts). In 2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400), 573-576 vol. 2. https://doi.org/10.1109/ICMEL. 2000.838756
[13]
Jason S. Chan, Thorsten Maucher, Johannes Schemmel, Dana Kilroy, Fiona N. Newell, and Karlheinz Meier. 2007. The virtual haptic display: A device for exploring 2-D virtual shapes in the tactile modality. Behavior Research Methods 39, 4 : 802-810. https://doi.org/10.3758/BF03192972
[14]
Venkatesh R. Chari. 2014. Tactile Graphic Display.
[15]
V. G. Chouvardas, A. N. Miliou, and M. K. Hatalis. 2008. Tactile displays: Overview and recent advances. Displays 29, 3 : 185-194. https://doi.org/10.1016/j.displa. 2007. 07.003
[16]
Vasileios Chouvardas, Amalia Miliou, and Miltiadis Hatalis. 2005. Tactile displays: A short overview and recent developments. Proceedings of the 5th International Conference on Technology and Automation.
[17]
Sean Follmer, Daniel Leithinger, Alex Olwal, Akimitsu Hogge, and Hiroshi Ishii. 2013. inFORM: dynamic physical affordances and constraints through shape and object actuation. In Proceedings of the 26th annual ACM symposium on User interface software and technology (UIST '13), 417-426. https://doi.org/10.1145/2501988.2502032
[18]
Joerg Fricke. 1997. Different approaches to large tactile screens suitable for graphics. https://doi.org/10.1049/ic:19970085
[19]
Kenjiro Fukuda, Tsuyoshi Sekitani, Ute Zschieschang, Hagen Klauk, Kazunori Kuribara, Tomoyuki Yokota, Takushi Sugino, Kinji Asaka, Masaaki Ikeda, Hirokazu Kuwabara, Tatsuya Yamamoto, Kazuo Takimiya, Takanori Fukushima, Takuzo Aida, Makoto Takamiya, Takayasu Sakurai, and Takao Someya. 2011. A 4 V Operation, Flexible Braille Display Using Organic Transistors, Carbon Nanotube Actuators, and Organic Static RandomAccess Memory. Advanced Functional Materials 21, 21 : 4019-4027. https://doi.org/10.1002/adfm.201101050
[20]
Barney G. Glaser. 1965. The Constant Comparative Method of Qualitative Analysis. Social Problems 12, 4: 436-445. https://doi.org/10.2307/798843
[21]
M. Hafez. 2007. Tactile interfaces: technologies, applications and challenges. The Visual Computer 23 : 267-272. https://doi.org/10.1007/s00371-007-0102-2
[22]
Leona Holloway, Swamy Ananthanarayan, Matthew Butler, Madhuka Thisuri De Silva, Kirsten Ellis, Cagatay Goncu, Kate Stephens, and Kim Marriott. 2022. Animations at Your Fingertips: Using a Refreshable Tactile Display to Convey Motion Graphics for People who are Blind or have Low Vision. In Proceedings of the 24th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '22), 1-16. https://doi.org/10.1145/3517428.3544797
[23]
Ri Su Hong, In Sik Lee, and Akiyoshi Morita. 1998. Graphic tactile cell. Retrieved August 11, 2022 from https://www.freepatentsonline.com/5842867.html
[24]
Da-Yuan Huang, Ruizhen Guo, Jun Gong, Jingxian Wang, John Graham, De-Nian Yang, and Xing-Dong Yang. 2017. RetroShape: Leveraging Rear-Surface Shape Displays for 2.5D Interaction on Smartwatches. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (UIST '17), 539-551. https://doi.org/10.1145/3126594.3126610
[25]
W. M. Huang, Z. Ding, C. C. Wang, J. Wei, Y. Zhao, and H. Purnawali. 2010. Shape memory materials. Materials Today 13, 7 : 54-61. https://doi.org/10.1016/S1369-7021 ( 10 ) 70128-0
[26]
Hiroki Ishizuka and Norihisa Miki. 2015. MEMS-based tactile displays. Displays 37 : 25-32. https://doi.org/10.1016/j.displa. 2014. 10.007
[27]
Marco Janko, Michael Wiertlewski, and Yon Visell. 2018. Contact geometry and mechanics predict friction forces during tactile surface exploration. Scientific Reports 8, 1 : 4868. https://doi.org/10.1038/s41598-018-23150-7
[28]
Michael Taphouse Jonathan. 2020. Haptic display device.
[29]
Cheryl Kamei-Hannan and Holly Lawson. 2012. Impact of a Braille-Note on Writing: Evaluating the Process, Quality, and Attitudes of Three Students Who are Visually Impaired. Journal of Special Education Technology 27, 3 : 1-14. https://doi.org/10.1177/016264341202700301
[30]
Yusaku Kato, Tsuyoshi Sekitani, Makoto Takamiya, Masao Doi, Kinji Asaka, Takayasu Sakurai, and Takao Someya. 2007. Sheet-Type Braille Displays by Integrating Organic Field-Effect Transistors and Polymeric Actuators. IEEE Transactions on Electron Devices 54, 2 : 202-209. https://doi.org/10.1109/TED. 2006.888678
[31]
Yoshihiro Kawai and Fumiaki Tomita. 1996. Interactive tactile display system: a support system for the visually disabled to recognize 3D objects. In Proceedings of the second annual ACM conference on Assistive technologies-Assets '96, 45-50. https://doi.org/10.1145/228347.228356
[32]
Joonyeong Kim, Byung-Kil Han, Dongbum Pyo, Semin Ryu, Hanbyeol Kim, and Dong-Soo Kwon. 2020. Braille Display for Portable Device Using Flip-Latch Structured Electromagnetic Actuator. IEEE Transactions on Haptics 13, 1 : 59-65. https://doi.org/10.1109/TOH. 2019.2963858
[33]
Ju Yoon Kim, Ji Ho Kim, and Hyeon Cheol Park. 2019. Information Output Apparatus.
[34]
Ju Yoon Kim, Ji Ho Kim, and Hyeon Cheol Park. 2022. Information Output Device and Method.
[35]
Igmo Koo, Kwangmok Jung, Jachoon Koo, Jea-do Nam, Youngkwan Lee, and Hyouk Ryeol Choi. 2006. Wearable Fingertip Tactile Display. In 2006 SICE-ICASE International Joint Conference, 1911-1916. https://doi.org/10.1109/SICE. 2006.315343
[36]
Ki-Uk Kyung, Minseung Ahn, Dong-Soo Kwon, and Mandayam A. Srinivasan. 2006. A compact planar distributed tactile display and effects of frequency on texture judgment. Advanced Robotics 20, 5 : 563-580. https://doi.org/10.1163/156855306776985540
[37]
Zhang Le. 2011. Dot-matrix magnetic control convex point braille displayer.
[38]
Jeong Yeol Lee. 2010. Tactile Display Composed of Pins That Are Supported by Fixing Bars Having Repetitive Protrusion-Depression Pattern.
[39]
D. Leonardis, C. Loconsole, and A. Frisoli. 2017. A Survey on Innovative Refreshable Braille Display Technologies. In AHFE. https://doi.org/10.1007/978-3-319-60597-5_46
[40]
Alexis Marette, Alexandre Poulin, Nadine Besse, Samuel Rosset, Danick Briand, and Herbert Shea. 2017. Flexible Zinc-Tin Oxide Thin Film Transistors Operating at 1 kV for Integrated Switching of Dielectric Elastomer Actuators Arrays. Advanced Materials 29, 30 : 1700880. https://doi.org/10.1002/adma.201700880
[41]
T. Matsunaga, K. Totsu, M. Esashi, and Y. Haga. 2005. Tactile Display for 2-D and 3-D Shape Expression Using SMA Micro Actuators. In 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology, 88-91. https://doi.org/10.1109/MMB. 2005.1548391
[42]
Marc Matysek, Peter Lotz, Thomas Winterstein, and Helmut F. Schlaak. 2009. Dielectric elastomer actuators for tactile displays. In World Haptics 2009-Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 290-295. https://doi.org/10.1109/WHC. 2009.4810822
[43]
Takashi Mineta, Hiroshi Yanatori, Kenta Hiyoshi, Kazuki Tsuji, Yasuhiro Ono, and Konomu Abe. 2017. Tactile display MEMS device with SU8 micro-pin and spring on SMA film actuator array. In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2031-2034. https://doi.org/10.1109/TRANSDUCERS. 2017.7994471
[44]
Viktor Miruchna, Robert Walter, David Lindlbauer, Maren Lehmann, Regine von Klitzing, and Jörg Müller. 2015. GelTouch: Localized Tactile Feedback Through Thin, Programmable Gel. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (UIST '15), 3-10. https://doi.org/10.1145/2807442.2807487
[45]
An Mo and Wenzeng Zhang. 2019. A novel universal gripper based on meshed pin array. International Journal of Advanced Robotic Systems 16, 2: 1729881419834781. https://doi.org/10.1177/1729881419834781
[46]
Ali Mohammadi, Mahmoud Abdelkhalek, and Shamin Sadrafshari. 2020. Resonance frequency selective electromagnetic actuation for high-resolution vibrotactile displays. Sensors and Actuators A: Physical 302 : 111818. https://doi.org/10.1016/j.sna. 2019.111818
[47]
Mukhriddin Mukhiddinov and Soon-Young Kim. 2021. A Systematic Literature Review on the Automatic Creation of Tactile Graphics for the Blind and Visually Impaired. Processes 9, 10 : 1726. https://doi.org/10.3390/pr9101726
[48]
Mutsuhiro Nakamo, Koichi Hirota, and Michitaka Hirose. 2004. High Resolution Point Stimulating Flat Display.
[49]
M. Nakashige, K. Hirota, and M. Hirose. 2004. Linear actuator for high-resolution tactile display. In RO-MAN 2004. 13th IEEE International Workshop on Robot and Human Interactive Communication (IEEE Catalog No.04TH8759), 587-590. https://doi.org/10.1109/ROMAN. 2004.1374826
[50]
Koichiro Nishikawa, Toshiro Kono, Tadashi Aizawa, Yoshinari Yokochi, Ryo Saito, Akinari Suehiro, Kazunori Namiki, Yoko Tokuda, Haruo Matsuo, and Kenji Narisawa. 2002. Tactile Display.
[51]
Xiaofan Niu, Xinguo Yang, Paul Brochu, Hristiyan Stoyanov, Sungryul Yun, Zhibin Yu, and Qibing Pei. 2012. Bistable Large-Strain Actuation of Interpenetrating Polymer Networks. Advanced Materials 24, 48 : 6513-6519. https://doi.org/10.1002/adma.201202876
[52]
Sile O'Modhrain, Nicholas Giudice, John Gardner, and Gordon Legge. 2015. Designing Media for VisuallyImpaired Users of Refreshable Touch Displays: Possibilities and Pitfalls. IEEE transactions on haptics 8. https://doi.org/10.1109/TOH. 2015.2466231
[53]
M.V. Ottermo, O. Stavdahl, and T.A. Johansen. 2005. Electromechanical design of a miniature tactile shape display for minimally invasive surgery. In First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference, 561-562. https://doi.org/10.1109/WHC. 2005.50
[54]
Grégory Petit, Aude Dufresne, Vincent Levesque, Vincent Hayward, and Nicole Trudeau. 2008. Refreshable tactile graphics applied to schoolbook illustrations for students with visual impairment. https://doi.org/10.1145/1414471.1414489
[55]
Thomas U. Pimmler and Steven D. Eppinger. 2021. Integration Analysis of Product Decompositions. 343-351. https://doi.org/10.1115/DETC1994-0034
[56]
Denise Prescher, Jens Bornschein, Wiebke Köhlmann, and Gerhard Weber. 2018. Touching graphical applications: bimanual tactile interaction on the HyperBraille pin-matrix display. Universal Access in the Information Society 17, 2: 391-409. https://doi.org/10.1007/s10209-017-0538-8
[57]
Michael Prince, Laurence PJ Kenney, and Dave Howard. 2020. A pin-array method for capturing tissue deformation under defined pressure distributions and its application to prosthetic socket design. Medical Engineering & Physics 84 : 136-143. https://doi.org/10.1016/j.medengphy. 2020. 08.003
[58]
Xuecheng Qu, Xiu Ma, Bojing Shi, Hu Li, Li Zheng, Chan Wang, Zhuo Liu, Yubo Fan, Xiangyu Chen, Zhou Li, and Zhong Lin Wang. 2021. Refreshable Braille Display System Based on Triboelectric Nanogenerator and Dielectric Elastomer. Advanced Functional Materials 31, 5 : 2006612. https://doi.org/10.1002/adfm.202006612
[59]
Vinesh Raja and Kiran J. Fernandes. 2007. Reverse Engineering: An Industrial Perspective. Springer Science & Business Media.
[60]
John W. Roberts, Oliver T. Slattery, Bretton Swope, David W. Kardos, Volker Min, Michael Sutton, Edwin C. Mulkens, Gina Rodgers, Nicholas Guttenberg, and Tracy Comstock. 2003. Extended refreshable tactile graphic array for scanned tactile display.
[61]
Alexander Russomanno, R. Brent Gillespie, Sile O'Modhrain, and Mark Burns. 2015. The design of pressurecontrolled valves for a refreshable tactile display. In 2015 IEEE World Haptics Conference (WHC), 177-182. https://doi.org/10.1109/WHC. 2015.7177710
[62]
Alexander Russomanno, Sile O'Modhrain, R. Brent Gillespie, and Matthew W. M. Rodger. 2015. Refreshing Refreshable Braille Displays. IEEE transactions on haptics 8, 3: 287-297. https://doi.org/10.1109/TOH. 2015.2423492
[63]
Peihao Shi, Zhengtao Hu, Kazuyuki Nagata, Weiwei Wan, Yukiyasu Domae, and Kensuke Harada. 2021. Development of a shape-memorable adaptive pin array fixture. Advanced Robotics 35, 10 : 591-602. https://doi.org/10.1080/01691864. 2021.1911845
[64]
Youngbo Aram Shim, Keunwoo Park, and Geehyuk Lee. 2019. Using Poke Stimuli to Improve a 3x3 Watch-back Tactile Display. In Proceedings of the 21st International Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI '19), 1-8. https://doi.org/10.1145/3338286.3340134
[65]
Roger O. Smith, Marcia J. Scherer, Rory Cooper, Diane Bell, David A. Hobbs, Cecilia Pettersson, Nicky Seymour, Johan Borg, Michelle J. Johnson, Joseph P. Lane, S. Sujatha, P. V. M. Rao, Qussai M. Obiedat, Malcolm MacLachlan, and Stephen Bauer. 2018. Assistive technology products: a position paper from the first global research, innovation, and education on assistive technology (GREAT) summit. Disability and Rehabilitation: Assistive Technology 13, 5 : 473-485. https://doi.org/10.1080/17483107. 2018.1473895
[66]
Pruittikorn Smithmaitrie, Jinda Kanjantoe, and Pichaya Tandayya. 2008. Touching force response of the piezoelectric Braille cell. Disability and Rehabilitation. Assistive Technology 3, 6 : 360-365. https://doi.org/10.1080/17483100802281442
[67]
Harshal A. Sonar, Aaron P. Gerratt, Stéphanie P. Lacour, and Jamie Paik. 2019. Closed-Loop Haptic Feedback Control Using a Self-Sensing Soft Pneumatic Actuator Skin. Soft Robotics 7, 1 : 22-29. https://doi.org/10.1089/soro. 2019.0013
[68]
Jeremy Streque, Abdelkrim Talbi, Philippe Pernod, and Vladimir Preobrazhensky. 2010. New Magnetic Microactuator Design Based on PDMS Elastomer and MEMS Technologies for Tactile Display. IEEE Transactions on Haptics 3, 2 : 88-97. https://doi.org/10.1109/TOH. 2009.61
[69]
Ian Summers, Craig Chanter, Anna Telling, and Alan Brady. 2001. Results from a Tactile Array on the Fingertip.
[70]
Zoltan Szabo and Eniko T. Enikov. 2012. Development of Wearable Micro-actuator Array for 3-D Virtual Tactile Displays. Journal of Electromagnetic Analysis and Applications 4, 6 : 219-229. https://doi.org/10.4236/jemaa. 2012.46031
[71]
Faisal Taher, John Hardy, Abhijit Karnik, Christian Weichel, Yvonne Jansen, Kasper Hornbaek, and Jason Alexander. 2015. Exploring Interactions with Physically Dynamic Bar Charts. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15), 3237-3246. https://doi.org/10.1145/2702123.2702604
[72]
N. Torras, K. E. Zinoviev, C. J. Camargo, Eva M. Campo, H. Campanella, J. Esteve, J. E. Marshal, E. M. Terentjev, M. Omastova, I. Krupa, P. Teplický, B. Mamojka, P. Burns, B. Röder, M. Vallribera, R. Malet, S. Zuffanelli, V. Soler, J. Roig, N. Walker, D. Wenn, F. Vossen, and F. M. H. Crompvoets. 2013. Nematic opto-mechanical actuators for the fabrication of refreshable tactile systems. In 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 1691-1694. https://doi.org/10.1109/Transducers. 2013.6627111
[73]
Oleg B. Tretiakoff and Andree B. Tretiakoff. 1998. Tactile display driven by shape memory wires.
[74]
Yusuke Ujitoko, Takaaki Taniguchi, Sho Sakurai, and Koichi Hirota. 2020. Development of Finger-Mounted HighDensity Pin-Array Haptic Display. IEEE Access 8 : 145107-145114. https://doi.org/10.1109/ACCESS. 2020.3015058
[75]
Karl T. Ulrich and Steven D. Eppinger. 2016. Product design and development. McGraw-Hill Education, New York, NY.
[76]
R. Velazquez, E.E. Pissaloux, and M. Wiertlewski. 2006. A compact tactile display for the blind with shape memory alloys. In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 3905-3910. https://doi.org/10.1109/ROBOT. 2006.1642300
[77]
F. Vidal-Verdu, Manuel J. Madueno, and Rafael Navas. 2005. Thermopneumatic actuator for tactile displays and smart actuation circuitry. In Smart Sensors, Actuators, and MEMS II, 484-492. https://doi.org/10.1117/12.607603
[78]
Fernando Vidal-Verdú and M. Hafez. 2007. Graphical Tactile Displays for Visually-Impaired People. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society 15 : 119-30. https://doi.org/10.1109/TNSRE. 2007.891375
[79]
Roman Vitushinsky, Sam Schmitz, and Alfred Ludwig. 2009. Bistable Thin-Film Shape Memory Actuators for Applications in Tactile Displays. Journal of Microelectromechanical Systems 18, 1: 186-194. https://doi.org/10.1109/JMEMS. 2008.2009816
[80]
Thorsten Völkel, Gerhard Weber, and Ulrich Baumann. 2008. Tactile Graphics Revised: The Novel BrailleDis 9000 Pin-Matrix Device with Multitouch Input. In Computers Helping People with Special Needs (Lecture Notes in Computer Science), 835-842. https://doi.org/10.1007/978-3-540-70540-6_124
[81]
Xin Xie, Sanwei Liu, Chenye Yang, Zhengyu Yang, Juncai Xu, Cheng Hong Zhang, and Xianglin Zhai. 2017. A Review of Smart Materials in Tactile Actuators for Information Delivery. https://doi.org/10.3390/c3040038
[82]
Jiale Xu, Yusuke Kimura, Kazuki Tsuji, Konomu Abe, Tomomi Shimizu, Hiroyasu Hasegawa, and Takashi Mineta. 2020. Fabrication and characterization of SMA film actuator array with bias spring for high-power MEMS tactile display. Microelectronic Engineering 227 : 111307. https://doi.org/10.1016/j.mee. 2020.111307
[83]
Wenzhen Yang, Jinpen Huang, Ruirui Wang, Wen Zhang, Haitao Liu, and Jianliang Xiao. 2021. A Survey on Tactile Displays for Visually Impaired People. IEEE Transactions on Haptics: 1-1. https://doi.org/10.1109/TOH. 2021.3085915
[84]
Anne-Catherin Zappe, Thorsten Maucher, Karlheinz Meier, and Christian Scheiber. 2004. Evaluation of a pneumatically driven tactile stimulator device for vision substitution during fMRI studies. Magnetic Resonance in Medicine 51, 4 : 828-834. https://doi.org/10.1002/mrm.20021
[85]
Juan Jose Zarate, Olexandr Gudozhnik, Anthony Sébastien Ruch, and Herbert Shea. 2017. Keep in Touch: Portable Haptic Display with 192 High Speed Taxels. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA '17), 349-352. https://doi.org/10.1145/3027063.3052957
[86]
Juan José Zárate and Herbert Shea. 2017. Using Pot-Magnets to Enable Stable and Scalable Electromagnetic Tactile Displays. IEEE Transactions on Haptics 10, 1 : 106-112. https://doi.org/10.1109/TOH. 2016.2591951
[87]
Juan José Zarate and Herbert Shea. 2018. An Electromagnetic Actuator.
[88]
Lanfang Zhang, Juanjuan Ji, Chaolong Zhang, Wenxiang Ding, and Yuan Yuan. 2017. Touch braille and graph display device.
[89]
Two-dimensional, touch-sensitive graphic displays-metec AG. Retrieved August 5, 2020 from https://www.metec-ag.de/en/produkte-graphik-display.php
[90]
Orbit Reader 20-Braille Display, Book Reader and Note-taker. Includes an SD Card, Charger and a USB cable-Orbit Research. Retrieved August 27, 2021 from http://www.orbitresearch.com/product/orbit-reader-20 /
[91]
NormalTouch and TextureTouch | Proceedings of the 29th Annual Symposium on User Interface Software and Technology. Retrieved August 12, 2022 from https://dl.acm.org/doi/10.1145/2984511.2984526
[92]
Elevate : A Walkable Pin-Array for Large Shape-Changing Terrains | Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. Retrieved February 14, 2023 from https://dl.acm.org/doi/10.1145/3411764.3445454
[93]
Graphiti ®-a Breakthrough in Non-Visual Access to All Forms of Graphical Information. Orbit Research. Retrieved July 2, 2022 from http://www.orbitresearch.com/product/graphiti/
[94]
Graphiti ®-a Breakthrough in Non-Visual Access to All Forms of Graphical Information. Orbit Research. Retrieved April 16, 2020 from http://www.orbitresearch.com/product/graphiti/
[95]
Dot Pad-The first tactile graphics display for the visually impaired. Dot Pad. Retrieved July 5, 2022 from https://pad.dotincorp.com/
[96]
Qualitative Content Analysis in Practice | SAGE Publications Ltd. Retrieved February 16, 2023 from https://uk.sagepub. com/en-gb/eur/qualitative-content-analysis-in-practice/book234633
[97]
Morphological charts. Retrieved August 14, 2022 from https://www.ifm.eng.cam.ac.uk/research/dmg/tools-andtechniques/morphological-charts/
[98]
Espacenet-search results. Retrieved August 9, 2022 from https://worldwide.espacenet.com/patent/search/family/032768049/publication/JP2004199038A? q=pn%3DJP200419 9038A
[99]
Analysis and Design of Piezoelectric Braille Display | IntechOpen. Retrieved January 7, 2022 from https://www.intechopen.com/chapters/9307
[100]
blindpad.eu | Personal Assistive Device for BLIND and visually impaired people. Retrieved January 27, 2022 from https://www.blindpad.eu/
[101]
DotBook: Refreshable Braille Display. KritiKal Solutions. Retrieved June 10, 2020 from https://kritikalsolutions.com/products/dotbook/
[102]
shapeShift | Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM Conferences. Retrieved July 2, 2022 from https://dl.acm.org/doi/abs/10.1145/3173574.3173865
[103]
Tigmanshu Bhatnagar. ( 2023 ) Data for the Analysis of Product Architectures of Pin Array Technologies for Tactile Displays [Data Set]. https://doi.org/10.1145/3580422
[104]
Received February 2023 ; accepted May 2023.

Cited By

View all
  • (2024)PRET Printer: Development and Evaluation of a Passive Refreshable Tactile PrinterProceedings of the 7th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies10.1145/3674829.3675070(156-166)Online publication date: 8-Jul-2024

Index Terms

  1. Analysis of Product Architectures of Pin Array Technologies for Tactile Displays

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the ACM on Human-Computer Interaction
    Proceedings of the ACM on Human-Computer Interaction  Volume 7, Issue ISS
    December 2023
    482 pages
    EISSN:2573-0142
    DOI:10.1145/3554314
    Issue’s Table of Contents
    This work is licensed under a Creative Commons Attribution 4.0 International License.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 November 2023
    Published in PACMHCI Volume 7, Issue ISS

    Permissions

    Request permissions for this article.

    Check for updates

    Badges

    Author Tags

    1. Literature Review
    2. Pin Array
    3. Product Architecture
    4. Tactile

    Qualifiers

    • Research-article

    Funding Sources

    • Foreign, Commonwealth and Development Office, UK Government

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)647
    • Downloads (Last 6 weeks)49
    Reflects downloads up to 12 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)PRET Printer: Development and Evaluation of a Passive Refreshable Tactile PrinterProceedings of the 7th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies10.1145/3674829.3675070(156-166)Online publication date: 8-Jul-2024

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media