Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3627673.3679596acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article
Open access

Collaborative Cross-modal Fusion with Large Language Model for Recommendation

Published: 21 October 2024 Publication History

Abstract

Despite the success of conventional collaborative filtering (CF) approaches for recommendation systems, they exhibit limitations in leveraging semantic knowledge within the textual attributes of users and items. Recent focus on the application of large language models for recommendation (LLM4Rec) has highlighted their capability for effective semantic knowledge capture. However, these methods often overlook the collaborative signals in user behaviors. Some simply instruct-tune a language model, while others directly inject the embeddings of a CF-based model, lacking a synergistic fusion of different modalities. To address these issues, we propose a framework of Collaborative Cross-modal Fusion with Large Language Models, termed CCF-LLM, for recommendation. In this framework, we translate the user-item interactions into a hybrid prompt to encode both semantic knowledge and collaborative signals, and then employ an attentive cross-modal fusion strategy to effectively fuse latent embeddings of both modalities. Extensive experiments demonstrate that CCF-LLM outperforms existing methods by effectively utilizing semantic and collaborative signals in the LLM4Rec context.

References

[1]
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023. GPT-4 technical report. arxiv: 2303.08774
[2]
Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. 2023. TALLRec: An effective and efficient tuning framework to align large language model with recommendation. In RecSys. 1007--1014.
[3]
Matthew Brand. 2003. Fast online SVD revisions for lightweight recommender systems. In SDM. 37--46.
[4]
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. In NeurIPS. 1877--1901.
[5]
Rui Chen, Qingyi Hua, Yan-Shuo Chang, Bo Wang, Lei Zhang, and Xiangjie Kong. 2018. A survey of collaborative filtering-based recommender systems: From traditional methods to hybrid methods based on social networks. IEEE Access, Vol. 6 (2018), 64301--64320.
[6]
Zheng Chen. 2023. PALR: Personalization Aware LLMs for Recommendation. arxiv: 2305.07622
[7]
Zhiyong Cheng, Ying Ding, Xiangnan He, Lei Zhu, Xuemeng Song, and Mohan S Kankanhalli. 2018. A$^3$NCF: An Adaptive Aspect Attention Model for Rating Prediction. In IJCAI. 3748--3754.
[8]
Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. 2023. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. https://vicuna. lmsys. org
[9]
Zeyu Cui, Jianxin Ma, Chang Zhou, Jingren Zhou, and Hongxia Yang. 2022. M6-rec: Generative pretrained language models are open-ended recommender systems. (2022). arxiv: 2205.08084
[10]
Mukund Deshpande and George Karypis. 2004. Item-based top-n recommendation algorithms. ACM Transactions on Information Systems, Vol. 22, 1 (2004), 143--177.
[11]
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In ACL. 4171--4186.
[12]
Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2022. Recommendation as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5). In RecSys. 299--315.
[13]
F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History and context. Acm Transactions on Interactive Intelligent Systems, Vol. 5, 4 (2015), 1--19.
[14]
Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In WWW. 507--517.
[15]
Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for recommendation. In SIGIR. 639--648.
[16]
Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural collaborative filtering. In WWW. 173--182.
[17]
Zhankui He, Zhouhang Xie, Rahul Jha, Harald Steck, Dawen Liang, Yesu Feng, Bodhisattwa Prasad Majumder, Nathan Kallus, and Julian McAuley. 2023. Large language models as zero-shot conversational recommenders. In CIKM. 720--730.
[18]
John D Holt and Soon M Chung. 1999. Efficient mining of association rules in text databases. In CIKM. 234--242.
[19]
Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley, and Wayne Xin Zhao. 2024. Large language models are zero-shot rankers for recommender systems. In ECIR. 364--381.
[20]
Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2022. Lora: Low-rank adaptation of large language models. In ICLR.
[21]
Wenyue Hua, Lei Li, Shuyuan Xu, Li Chen, and Yongfeng Zhang. 2023. Tutorial on Large Language Models for Recommendation. In RecSys. 1281--1283.
[22]
Jianchao Ji, Zelong Li, Shuyuan Xu, Wenyue Hua, Yingqiang Ge, Juntao Tan, and Yongfeng Zhang. 2024. GenRec: Large language model for generative recommendation. In ECIR. 494--502.
[23]
Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recommendation. In ICDM. 197--206.
[24]
James M Keller, Michael R Gray, and James A Givens. 1985. A fuzzy k-nearest neighbor algorithm. IEEE transactions on systems, man, and cybernetics 4 (1985), 580--585.
[25]
Ioannis Konstas, Vassilios Stathopoulos, and Joemon M Jose. 2009. On social networks and collaborative recommendation. In SIGIR. 195--202.
[26]
Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender systems. Computer, Vol. 42, 8 (2009), 30--37.
[27]
Xiangyang Li, Bo Chen, Lu Hou, and Ruiming Tang. 2023. CTRL: Connect Tabular and Language Model for CTR Prediction. arxiv: 2306.02841
[28]
Xinhang Li, Chong Chen, Xiangyu Zhao, Yong Zhang, and Chunxiao Xing. 2023. E4SRec: An Elegant Effective Efficient Extensible Solution of Large Language Models for Sequential Recommendation. arxiv: 2312.02443
[29]
Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu, Yancheng Yuan, Xiang Wang, and Xiangnan He. 2024. Llara: Large language-recommendation assistant. In SIGIR. 1785--1795.
[30]
Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Xiangyang Li, Chenxu Zhu, Huifeng Guo, Yong Yu, Ruiming Tang, et al. 2023. How Can Recommender Systems Benefit from Large Language Models: A Survey. (2023). arxiv: 2306.05817
[31]
Huanshuo Liu, Bo Chen, Menghui Zhu, Jianghao Lin, Jiarui Qin, Yang Yang, Hao Zhang, and Ruiming Tang. 2024. Retrieval-Oriented Knowledge for Click-Through Rate Prediction. arxiv: 2404.18304
[32]
Peng Liu, Lemei Zhang, and Jon Atle Gulla. 2023. Pre-train, Prompt, and Recommendation: A Comprehensive Survey of Language Modeling Paradigm Adaptations in Recommender Systems. Transactions of the Association for Computational Linguistics, Vol. 11 (2023), 1553--1571.
[33]
Hanjia Lyu, Song Jiang, Hanqing Zeng, Yinglong Xia, Qifan Wang, Si Zhang, Ren Chen, Chris Leung, Jiajie Tang, and Jiebo Luo. 2024. LLM-Rec: Personalized Recommendation via Prompting Large Language Models. In NAACL. 583--612.
[34]
Yashar Moshfeghi, Benjamin Piwowarski, and Joemon M Jose. 2011. Handling data sparsity in collaborative filtering using emotion and semantic based features. In SIGIR. 625--634.
[35]
Zhaopeng Qiu, Xian Wu, Jingyue Gao, and Wei Fan. 2021. U-BERT: Pre-training user representations for improved recommendation. In AAAI. 4320--4327.
[36]
Steffen Rendle. 2010. Factorization machines. In ICDM. 995--1000.
[37]
Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI. 452--461.
[38]
Yue Shi, Martha Larson, and Alan Hanjalic. 2014. Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges. Comput. Surveys, Vol. 47, 1 (2014), 1--45.
[39]
Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. 2015. Highway networks. arxiv: 1505.00387
[40]
Xiaoyuan Su and Taghi M Khoshgoftaar. 2009. A survey of collaborative filtering techniques. Advances in artificial intelligence (2009).
[41]
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation language models. (2023). arxiv: 2302.13971
[42]
Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using t-SNE. Journal of Machine Learning Research, Vol. 9, 86 (2008), 2579--2605.
[43]
Lei Wang and Ee-Peng Lim. 2023. Zero-Shot Next-Item Recommendation using Large Pretrained Language Models. arxiv: 2304.03153
[44]
Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. Kgat: Knowledge graph attention network for recommendation. In SIGIR. 950--958.
[45]
Yunjia Xi, Weiwen Liu, Jianghao Lin, Jieming Zhu, Bo Chen, Ruiming Tang, Weinan Zhang, Rui Zhang, and Yong Yu. 2023. Towards Open-World Recommendation with Knowledge Augmentation from Large Language Models. arxiv: 2306.10933
[46]
Xiwang Yang, Harald Steck, Yang Guo, and Yong Liu. 2012. On top-k recommendation using social networks. In RecSys. 67--74.
[47]
Bin Yin, Junjie Xie, Yu Qin, Zixiang Ding, Zhichao Feng, Xiang Li, and Wei Lin. 2023. Heterogeneous Knowledge Fusion: A Novel Approach for Personalized Recommendation via LLM. In RecSys. 599--601.
[48]
Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, et al. 2023. Glm-130b: An open bilingual pre-trained model. In ICLR.
[49]
Yuhui Zhang, Hao Ding, Zeren Shui, Yifei Ma, James Zou, Anoop Deoras, and Hao Wang. 2021. Language models as recommender systems: Evaluations and limitations. In NeurIPS Workshop ICBINB.
[50]
Yang Zhang, Fuli Feng, Jizhi Zhang, Keqin Bao, Qifan Wang, and Xiangnan He. 2023. Collm: Integrating collaborative embeddings into large language models for recommendation. arxiv: 2310.19488
[51]
Zizhuo Zhang and Bang Wang. 2023. Prompt Learning for News Recommendation. In SIGIR. 227--237.
[52]
Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through rate prediction. In KDD. 1059--1068.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
CIKM '24: Proceedings of the 33rd ACM International Conference on Information and Knowledge Management
October 2024
5705 pages
ISBN:9798400704369
DOI:10.1145/3627673
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 October 2024

Check for updates

Author Tags

  1. collaborative filtering
  2. cross-modal
  3. large language models
  4. recommendation systems

Qualifiers

  • Research-article

Funding Sources

  • Ministry of Education, Singapore

Conference

CIKM '24
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,861 of 8,427 submissions, 22%

Upcoming Conference

CIKM '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 366
    Total Downloads
  • Downloads (Last 12 months)366
  • Downloads (Last 6 weeks)101
Reflects downloads up to 20 Feb 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media