EFVAE: Efficient Federated Variational Autoencoder for Collaborative Filtering
Abstract
References
Index Terms
- EFVAE: Efficient Federated Variational Autoencoder for Collaborative Filtering
Recommendations
Trust-based collaborative filtering: tackling the cold start problem using regular equivalence
RecSys '18: Proceedings of the 12th ACM Conference on Recommender SystemsUser-based Collaborative Filtering (CF) is one of the most popular approaches to create recommender systems. This approach is based on finding the most relevant k users from whose rating history we can extract items to recommend. CF, however, suffers ...
Typicality-Based Collaborative Filtering Recommendation
Collaborative filtering (CF) is an important and popular technology for recommender systems. However, current CF methods suffer from such problems as data sparsity, recommendation inaccuracy, and big-error in predictions. In this paper, we borrow ideas ...
Exploiting user interests for collaborative filtering: interests expansion via personalized ranking
CIKM '10: Proceedings of the 19th ACM international conference on Information and knowledge managementIn real applications, a given user buys or rates an item based on his/her interests. Learning to leverage this interest information is often critical for recommender systems. However, in existing recommender systems, the information about latent user ...
Comments
Information & Contributors
Information
Published In
Sponsors
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Research-article
Funding Sources
Conference
Acceptance Rates
Upcoming Conference
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 122Total Downloads
- Downloads (Last 12 months)122
- Downloads (Last 6 weeks)45
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in