Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3632366.3632385acmconferencesArticle/Chapter ViewAbstractPublication PagesbdcatConference Proceedingsconference-collections
research-article

Sleep Well: Pragmatic Analysis of the Idle States of Intel Processors

Published: 03 April 2024 Publication History

Abstract

Rising energy consumption is of growing concern for cloud data center providers. Modern processors try to counteract this problem through low-power idle states that save energy in phases with little demand for compute resources. Making proper use of this feature, however, requires knowledge about the properties of these states for the very processors used in a specific setup; most importantly, the energy consumed in each idle state and the latency for resuming normal operation. Unfortunately, hardware vendors usually do not provide this critical information.
In this paper, we propose a scheme for automatically analyzing the idle states of modern Intel processors. Our open-source implementation uses an extensible Linux kernel module to measure the energy and latency implications of a system's processor without any manual intervention or external equipment. We demonstrate the practical applicability of our approach by analyzing two Intel processors from the Haswell and Skylake generation ---an Intel Core i7-4790 and an Intel Core i7-6700K, respectively. The results show that our implementation yields reliable, precise, and reproducible measurements for the energy and latency implications of each processor's various idle states.

References

[1]
G. Antoniou, H. Volos, D. B. Bartolini, T. Rollet, Y. Sazeides, and J. H. Yahya. 2022. AgilePkgC: an agile system idle state architecture for energy proportional datacenter servers. (2022).
[2]
L. A. Barroso, U. Hölzle, and P. Ranganathan. 2019. The Datacenter as a Computer: Designing Warehouse-scale Machines. Springer Nature.
[3]
J. Chapel. 2020. The cloud is booming --- but so is cloud waste. (Mar. 4, 2020). Retrieved July 23, 2023 from https://devops.com/the-cloud-is-booming-but-so-is-cloud-waste/.
[4]
M. Colmant, M. Kurpicz, P. Felber, L. Huertas, R. Rouvoy, and A. Sobe. 2015. Process-level power estimation in VM-based systems. In Proceedings of the Tenth European Conference on Computer Systems (EuroSys '15). European Conference on Computer Systems. ACM, Bordeaux, France, (Apr. 2015). isbn: 978-1-4503-3238-5.
[5]
V. Costan and S. Devadas. 2016. Intel SGX explained. (2016). https://eprint.iacr.org/2016/086.
[6]
S. Daud, R. B. Ahmad, O. B. Lynn, Z. I. Abd Kareem, L. Munirah Kamarudin, P. Ehkan, M. N. M. Warip, and R. R. Othman. 2014. The effects of CPU load & idle state on embedded processor energy usage. In 2014 2nd International Conference on Electronic Design (ICED), 30--35.
[7]
L. Duan, D. Zhan, and J. Hohnerlein. 2015. Optimizing Cloud Data Center Energy Efficiency via Dynamic Prediction of CPU Idle Intervals. In 2015 IEEE 8th International Conference on Cloud Computing, 985--988.
[8]
D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and R. Geyer. 2015. An energy efficiency feature survey of the Intel Haswell processor. In (IPDPSW '15). IEEE International Parallel and Distributed Processing Symposium Workshop. IEEE, Hyderabad, India, (May 2015), 896--904. isbn: 978-1-4673-7684-6.
[9]
M. Hähnel, B. Döbel, M. Völp, and H. Härtig. 2012. Measuring energy consumption for short code paths using RAPL. ACM SIGMETRICS Performance Evaluation Review, 40, 3, (Jan. 2012), 13--17.
[10]
D. Hardy, M. Kleanthous, I. Sideris, A. G. Saidi, E. Ozer, and Y. Sazeides. 2013. An analytical framework for estimating TCO and exploring data center design space. In 2013 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE, 54--63.
[11]
C.-H. Hsu, Q. Deng, J. Mars, and L. Tang. 2018. Smoothoperator: reducing power fragmentation and improving power utilization in large-scale datacenters. In Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems, 535--548.
[12]
T. Ilsche, M. Hähnel, R. Schöne, M. Bielert, and D. Hackenberg. 2017. Powernightmares: the challenge of efficiently using sleep states on multi-core systems. In Proceedings of the Workshop on Runtime and Operating Systems for the Many-Core Era (ROME '17). Workshop on Runtime and Operating Systems for the Many-Core Era. Springer, Santiago de Compostela, Spain, (Aug. 2017), 623--635. isbn: 978-3-319-75177-1.
[13]
T. Ilsche, R. Schöne, P. Joram, M. Bielert, and A. Gocht. 2018. System monitoring with lo2s: power and runtime impact of C-state transitions. In (IPDPSW '18). IEEE International Parallel and Distributed Processing Symposium Workshops. IEEE, Vancouver, BC, Canada, (May 2018), 712--715. isbn: 978-1-5386-5555-9.
[14]
Intel Corporation. 2022. 6th Generation Intel® Core™ Processor Family: Datasheet - Volume 1. (Feb. 2022). 164 pp. Retrieved July 23, 2023 from https://www.intel.com/content/www/us/en/content-details/332687/6th-generation-intel-core-processor-family-datasheet-volume-1.html.
[15]
Intel Corporation. 2015. Desktop 4th Generation Intel® Core™ Processor Family, Desktop Intel® Pentium® Processor Family, and Desktop Intel® Celeron® Processor Family: Datasheet - Volume 1 of 2. (Mar. 2015). 125 pp. Retrieved July 23, 2023 from https://cdrdv2.intel.com/v1/dl/getContent/328897?fileName=4th-gen-core-family-desktop-vol-1-datasheet.pdf.
[16]
Intel Corporation. 2004. IA-PC HPET (High Precision Event Timers) Specification. (Oct. 2004). 33 pp. https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf.
[17]
Intel Corporation. 2022. Intel 64 and IA-32 Architectures Software Developer's Manual. (Dec. 2022). 5060 pp. https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.
[18]
J. Koomey, K. Brill, P. Turner, J. Stanley, and B. Taylor. 2007. A Simple Model for Determining True Total Cost of Ownership for Data Centers. Uptime Institute White Paper, Version, 2, 2007.
[19]
M. Koot and F. Wijnhoven. 2021. Usage impact on data center electricity needs: a system dynamic forecasting model. Applied Energy, 291, 116798.
[20]
N. Kurd et al. 2015. Haswell: A Family of IA 22 nm Processors. IEEE Journal of Solid-State Circuits, 50, 1, 49--58.
[21]
A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby. 2014. Evaluation of CPU frequency transition latency. Computer Science-Research and Development, 29, 3--4, 187--195.
[22]
P. R. Panda, B. V. N. Silpa, A. Shrivastava, and K. Gummidipudi. 2010. Power-Efficient System Design. Springer Science & Business Media.
[23]
A. Paya and D. C. Marinescu. 2017. Energy-aware load balancing and application scaling for the cloud ecosystem. IEEE Transactions on Cloud Computing, 5, 1, 15--27.
[24]
Rafael J. Wysocki. 2017. CPU performance scaling --- the Linux kernel documentation. (2017). https://www.kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html.
[25]
R. Schöne, T. Ilsche, M. Bielert, A. Gocht, and D. Hackenberg. 2019. Energy efficiency features of the Intel Skylake-SP processor and their impact on performance. In International Conference on High Performance Computing & Simulation (HPCS '19). IEEE, Dublin, Ireland, (July 2019), 399--406. isbn: 978-1-72814-484-9.
[26]
R. Schöne, T. Ilsche, M. Bielert, M. Velten, M. Schmidl, and D. Hackenberg. 2021. Energy Efficiency Aspects of the AMD Zen 2 Architecture. In 2021 IEEE International Conference on Cluster Computing (CLUSTER), 562--571.
[27]
R. Schöne, D. Molka, and M. Werner. 2015. Wake-up latencies for processor idle states on current x86 processors. Computer Science - Research and Development, 30, 2, (May 2015), 219--227.
[28]
T. Smejkal, M. Hähnel, T. Ilsche, M. Roitzsch, W. E. Nagel, and H. Härtig. 2017. E-Team: practical energy accounting for multi-core systems. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Annual Technical Conference. USENIX Association, Santa Clara, CA, USA, (July 2017), 589--601. isbn: 978-1-931971-38-6. https://www.usenix.org/conference/atc17/technical-sessions/presentation/smejkal.
[29]
UEFI Forum, Inc. 2022. Advanced Configuration and Power Interface (ACPI) Specification. (Release 6.5 ed.). (Aug. 29, 2022). 1126 pp. https://uefi.org/sites/default/files/resources/ACPI_Spec_6_5_Aug29.pdf.
[30]
R. J. Wysocki. 2018. CPU idle time management --- the Linux kernel documentation. (2018). Retrieved July 23, 2023 from https://www.kernel.org/doc/html/latest/admin-guide/pm/cpuidle.html.
[31]
J. H. Yahya et al. 2022. AgileWatts: an energy-efficient CPU core idle-state architecture for latency-sensitive server applications. In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), 835--850.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
BDCAT '23: Proceedings of the IEEE/ACM 10th International Conference on Big Data Computing, Applications and Technologies
December 2023
187 pages
ISBN:9798400704734
DOI:10.1145/3632366
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 03 April 2024

Permissions

Request permissions for this article.

Check for updates

Badges

Author Tags

  1. energy
  2. measurement
  3. idle states
  4. wake-up latency
  5. intel processor
  6. Haswell
  7. Skylake
  8. RAPL
  9. HPET

Qualifiers

  • Research-article

Conference

BDCAT '23
Sponsor:

Acceptance Rates

Overall Acceptance Rate 27 of 93 submissions, 29%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 73
    Total Downloads
  • Downloads (Last 12 months)73
  • Downloads (Last 6 weeks)7
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media