Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3637528.3671537acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Xinyu: An Efficient LLM-based System for Commentary Generation

Published: 24 August 2024 Publication History

Abstract

Commentary provides readers with a deep understanding of events by presenting diverse arguments and evidence. However, creating commentary is a time-consuming task, even for skilled commentators. Large language models (LLMs) have simplified the process of natural language generation, but their direct application in commentary creation still faces challenges due to unique task requirements. These requirements can be categorized into two levels: 1) fundamental requirements, which include creating well-structured and logically consistent narratives, and 2) advanced requirements, which involve generating quality arguments and providing convincing evidence. In this paper, we introduce Xinyu, an efficient LLM-based system designed to assist commentators in generating Chinese commentaries. To meet the fundamental requirements, we deconstruct the generation process into sequential steps, proposing targeted strategies and supervised fine-tuning (SFT) for each step. To address the advanced requirements, we present an argument ranking model for arguments and establish a comprehensive evidence database that includes up-to-date events and classic books, thereby strengthening the substantiation of the evidence with retrieval augmented generation (RAG) technology. To evaluate the generated commentaries more fairly, corresponding to the two-level requirements, we introduce a comprehensive evaluation metric that considers five distinct perspectives in commentary generation. Our experiments confirm the effectiveness of our proposed system. We also observe a significant increase in the efficiency of commentators in real-world scenarios, with the average time spent on creating a commentary dropping from 4 hours to 20 minutes. Importantly, such an increase in efficiency does not compromise the quality of the commentaries.

References

[1]
Ibrahim Adeshola and Adeola Praise Adepoju. 2023. The opportunities and challenges of ChatGPT in education. Interactive Learning Environments (2023), 1--14.
[2]
Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023. Qwen Technical Report. CoRR, Vol. abs/2309.16609 (2023). https://doi.org/10.48550/ARXIV.2309.16609 showeprint[arXiv]2309.16609
[3]
Ronald Cardenas, Bingsheng Yao, Dakuo Wang, and Yufang Hou. 2023. 'Don't Get Too Technical with Me': A Discourse Structure-Based Framework for Automatic Science Journalism. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics, 1186--1202. https://aclanthology.org/2023.emnlp-main.76
[4]
Szu-Wei Cheng, Chung-Wen Chang, Wan-Jung Chang, Hao-Wei Wang, Chih-Sung Liang, Taishiro Kishimoto, Jane Pei-Chen Chang, John S Kuo, and Kuan-Pin Su. 2023. The now and future of ChatGPT and GPT in psychiatry. Psychiatry and clinical neurosciences, Vol. 77, 11 (2023), 592--596.
[5]
Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson correlation coefficient. Noise reduction in speech processing (2009), 1--4.
[6]
Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and Li Yuan. 2023. ChatLaw: Open-Source Legal Large Language Model with Integrated External Knowledge Bases. CoRR, Vol. abs/2306.16092 (2023). https://doi.org/10.48550/ARXIV.2306.16092 showeprint[arXiv]2306.16092
[7]
Wensheng Gan, Zhenlian Qi, Jiayang Wu, and Jerry Chun-Wei Lin. 2023. Large Language Models in Education: Vision and Opportunities. CoRR, Vol. abs/2311.13160 (2023). https://doi.org/10.48550/ARXIV.2311.13160 showeprint[arXiv]2311.13160
[8]
Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan. 2022. Precise Zero-Shot Dense Retrieval without Relevance Labels. arxiv: 2212.10496 [cs.IR]
[9]
Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu Guo, Meng Wang, and Haofen Wang. 2023. Retrieval-Augmented Generation for Large Language Models: A Survey. CoRR, Vol. abs/2312.10997 (2023). https://doi.org/10.48550/ARXIV.2312.10997 showeprint[arXiv]2312.10997
[10]
Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. 2022. Atlas: Few-shot Learning with Retrieval Augmented Language Models. arxiv: 2208.03299 [cs.CL]
[11]
Xianming Li and Jing Li. 2023. AnglE-optimized Text Embeddings. CoRR, Vol. abs/2309.12871 (2023). https://doi.org/10.48550/ARXIV.2309.12871 [arXiv]2309.12871
[12]
Yunxiang Li, Zihan Li, Kai Zhang, Ruilong Dan, and You Zhang. 2023. ChatDoctor: A Medical Chat Model Fine-tuned on LLaMA Model using Medical Domain Knowledge. CoRR, Vol. abs/2303.14070 (2023). https://doi.org/10.48550/ARXIV.2303.14070 [arXiv]2303.14070
[13]
June M. Liu, Donghao Li, He Cao, Tianhe Ren, Zeyi Liao, and Jiamin Wu. 2023. ChatCounselor: A Large Language Models for Mental Health Support. CoRR, Vol. abs/2309.15461 (2023). https://doi.org/10.48550/ARXIV.2309.15461 [arXiv]2309.15461
[14]
Yifei Liu, Yiquan Wu, Yating Zhang, Changlong Sun, Weiming Lu, Fei Wu, and Kun Kuang. 2023. Ml-ljp: Multi-law aware legal judgment prediction. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 1023--1034.
[15]
Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. 2023. Query Rewriting for Retrieval-Augmented Large Language Models. CoRR, Vol. abs/2305.14283 (2023). https://doi.org/10.48550/ARXIV.2305.14283 [arXiv]2305.14283
[16]
Kamil Malinka, Martin Peresíni, Anton Firc, Ondrej Hujnak, and Filip Janus. 2023. On the Educational Impact of ChatGPT: Is Artificial Intelligence Ready to Obtain a University Degree?. In Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 1, ITiCSE 2023, Turku, Finland, July 7-12, 2023, Mikko-Jussi Laakso, Mattia Monga, Simon, and Judithe Sheard (Eds.). ACM, 47--53. https://doi.org/10.1145/3587102.3588827
[17]
OpenAI. 2023. GPT-4 Technical Report. CoRR, Vol. abs/2303.08774 (2023). https://doi.org/10.48550/ARXIV.2303.08774 [arXiv]2303.08774
[18]
Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022. Training language models to follow instructions with human feedback. In Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
[19]
Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a Method for Automatic Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA. ACL, 311--318. https://doi.org/10.3115/1073083.1073135
[20]
Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. 2023. Enhancing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy. arxiv: 2305.15294 [cs.CL]
[21]
Kai Shen, Yichong Leng, Xu Tan, Siliang Tang, Yuan Zhang, Wenjie Liu, and Edward Lin. 2022. Mask the correct tokens: An embarrassingly simple approach for error correction. arXiv preprint arXiv:2211.13252 (2022).
[22]
Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and Wen tau Yih. 2023. REPLUG: Retrieval-Augmented Black-Box Language Models. arxiv: 2301.12652 [cs.CL]
[23]
Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan Scales, Ajay Kumar Tanwani, Heather Cole-Lewis, Stephen Pfohl, Perry Payne, Martin Seneviratne, Paul Gamble, Chris Kelly, Nathaneal Schärli, Aakanksha Chowdhery, Philip Andrew Mansfield, Blaise Agüera y Arcas, Dale R. Webster, Gregory S. Corrado, Yossi Matias, Katherine Chou, Juraj Gottweis, Nenad Tomasev, Yun Liu, Alvin Rajkomar, Joelle K. Barral, Christopher Semturs, Alan Karthikesalingam, and Vivek Natarajan. 2022. Large Language Models Encode Clinical Knowledge. CoRR, Vol. abs/2212.13138 (2022). https://doi.org/10.48550/ARXIV.2212.13138 [arXiv]2212.13138
[24]
Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark, Stephen Pfohl, Heather Cole-Lewis, Darlene Neal, Mike Schaekermann, Amy Wang, Mohamed Amin, Sami Lachgar, Philip Andrew Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska, Blaise Agüera y Arcas, Nenad Tomasev, Yun Liu, Renee Wong, Christopher Semturs, S. Sara Mahdavi, Joelle K. Barral, Dale R. Webster, Gregory S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan Karthikesalingam, and Vivek Natarajan. 2023. Towards Expert-Level Medical Question Answering with Large Language Models. CoRR, Vol. abs/2305.09617 (2023). https://doi.org/10.48550/ARXIV.2305.09617 [arXiv]2305.09617
[25]
Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding, Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi Chen, Yanbin Zhao, Yuxiang Lu, Weixin Liu, Zhihua Wu, Weibao Gong, Jianzhong Liang, Zhizhou Shang, Peng Sun, Wei Liu, Xuan Ouyang, Dianhai Yu, Hao Tian, Hua Wu, and Haifeng Wang. 2021. ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation. CoRR, Vol. abs/2107.02137 (2021). [arXiv]2107.02137 https://arxiv.org/abs/2107.02137
[26]
InternLM Team. 2023. InternLM: A Multilingual Language Model with Progressively Enhanced Capabilities. https://github.com/InternLM/InternLM.
[27]
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models. CoRR, Vol. abs/2302.13971 (2023). https://doi.org/10.48550/ARXIV.2302.13971 [arXiv]2302.13971
[28]
VoyageAI. 2023. VoyageAI. Voyage's embedding models. https://docs.voyageai.com/embeddings/.
[29]
Liang Wang, Nan Yang, and Furu Wei. 2023. Query2doc: Query Expansion with Large Language Models. arxiv: 2303.07678 [cs.IR]
[30]
Yiquan Wu, Kun Kuang, Yating Zhang, Xiaozhong Liu, Changlong Sun, Jun Xiao, Yueting Zhuang, Luo Si, and Fei Wu. 2020. De-biased court's view generation with causality. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 763--780.
[31]
Yiquan Wu, Weiming Lu, Yating Zhang, Adam Jatowt, Jun Feng, Changlong Sun, Fei Wu, and Kun Kuang. 2023. Focus-aware response generation in inquiry conversation. In Findings of the Association for Computational Linguistics: ACL 2023. 12585--12599.
[32]
Yiquan Wu, Siying Zhou, Yifei Liu, Weiming Lu, Xiaozhong Liu, Yating Zhang, Changlong Sun, Fei Wu, and Kun Kuang. 2023. Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model Collaboration. arXiv preprint arXiv:2310.09241 (2023).
[33]
Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. 2023. C-Pack: Packaged Resources To Advance General Chinese Embedding. arxiv: 2309.07597 [cs.CL]
[34]
Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2023. RECOMP: Improving Retrieval-Augmented LMs with Compression and Selective Augmentation. arxiv: 2310.04408 [cs.CL]
[35]
Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang, Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao, Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu, Jiaming Ji, Jian Xie, Juntao Dai, Kun Fang, Lei Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma, Mang Wang, Mickel Liu, MingAn Lin, Nuolan Nie, Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng Li, Tianyu Li, Wei Cheng, Weipeng Chen, Xiangrong Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin Men, Xin Yu, Xuehai Pan, Yanjun Shen, Yiding Wang, Yiyu Li, Youxin Jiang, Yuchen Gao, Yupeng Zhang, Zenan Zhou, and Zhiying Wu. 2023. Baichuan 2: Open Large-scale Language Models. CoRR, Vol. abs/2309.10305 (2023). https://doi.org/10.48550/ARXIV.2309.10305 showeprint[arXiv]2309.10305
[36]
Linan Yue, Qi Liu, Yichao Du, Weibo Gao, Ye Liu, and Fangzhou Yao. 2023. FedJudge: Federated Legal Large Language Model. CoRR, Vol. abs/2309.08173 (2023). https://doi.org/10.48550/ARXIV.2309.08173 [arXiv]2309.08173
[37]
Shengbin Yue, Wei Chen, Siyuan Wang, Bingxuan Li, Chenchen Shen, Shujun Liu, Yuxuan Zhou, Yao Xiao, Song Yun, Xuanjing Huang, and Zhongyu Wei. 2023. DISC-LawLLM: Fine-tuning Large Language Models for Intelligent Legal Services. CoRR, Vol. abs/2309.11325 (2023). https://doi.org/10.48550/ARXIV.2309.11325 [arXiv]2309.11325
[38]
Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan Liu, Peng Zhang, Yuxiao Dong, and Jie Tang. 2023. GLM-130B: An Open Bilingual Pre-trained Model. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net. https://openreview.net/pdf?id=-Aw0rrrPUF
[39]
Rongzhi Zhang, Jiaming Shen, Tianqi Liu, Haorui Wang, Zhen Qin, Feng Han, Jialu Liu, Simon Baumgartner, Michael Bendersky, and Chao Zhang. 2024. PLaD: Preference-based Large Language Model Distillation with Pseudo-Preference Pairs. arxiv: 2406.02886 [cs.CL]
[40]
Xujiang Zhao, Jiaying Lu, Chengyuan Deng, Can Zheng, Junxiang Wang, Tanmoy Chowdhury, Li Yun, Hejie Cui, Zhang Xuchao, Tianjiao Zhao, et al. 2023. Domain specialization as the key to make large language models disruptive: A comprehensive survey. arXiv preprint arXiv:2305.18703 (2023).
[41]
Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy. 2023. LIMA: Less Is More for Alignment. CoRR, Vol. abs/2305.11206 (2023). https://doi.org/10.48550/ARXIV.2305.11206 [arXiv]2305.11206
[42]
Siying Zhou, Yifei Liu, Yiquan Wu, Kun Kuang, Chunyan Zheng, and Fei Wu. 2022. Similar case based prison term prediction. In CAAI International Conference on Artificial Intelligence. Springer, 284--297.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
KDD '24: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
August 2024
6901 pages
ISBN:9798400704901
DOI:10.1145/3637528
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 August 2024

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. commentary generation
  2. llm-based system
  3. retrieval augmented generation
  4. supervised fine-tuning

Qualifiers

  • Research-article

Funding Sources

  • National Natural Science Foundation of China
  • the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study

Conference

KDD '24
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,133 of 8,635 submissions, 13%

Upcoming Conference

KDD '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 203
    Total Downloads
  • Downloads (Last 12 months)203
  • Downloads (Last 6 weeks)43
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media