Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Mixed Graph Contrastive Network for Semi-supervised Node Classification

Published: 19 June 2024 Publication History
  • Get Citation Alerts
  • Abstract

    Graph Neural Networks (GNNs) have achieved promising performance in semi-supervised node classification in recent years. However, the problem of insufficient supervision, together with representation collapse, largely limits the performance of the GNNs in this field. To alleviate the collapse of node representations in semi-supervised scenario, we propose a novel graph contrastive learning method, termed Mixed Graph Contrastive Network (MGCN). In our method, we improve the discriminative capability of the latent embeddings by an interpolation-based augmentation strategy and a correlation reduction mechanism. Specifically, we first conduct the interpolation-based augmentation in the latent space and then force the prediction model to change linearly between samples. Second, we enable the learned network to tell apart samples across two interpolation-perturbed views through forcing the correlation matrix across views to approximate an identity matrix. By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discriminative representation learning. Extensive experimental results on six datasets demonstrate the effectiveness and the generality of MGCN compared to the existing state-of-the-art methods. The code of MGCN is available at https://github.com/xihongyang1999/MGCN on Github.

    References

    [1]
    Peter L. Bartlett and Shahar Mendelson. 2002. Rademacher and Gaussian complexities: Risk bounds and structural results. J. Mach. Learn. Res. 3, Nov. (2002), 463–482.
    [2]
    Christopher Beckham, Sina Honari, Vikas Verma, Alex M. Lamb, Farnoosh Ghadiri, R. Devon Hjelm, Yoshua Bengio, and Chris Pal. 2019. On adversarial mixup resynthesis. Adv. Neural Inf. Process. Syst. 32 (2019).
    [3]
    Piotr Bielak, Tomasz Kajdanowicz, and Nitesh V. Chawla. 2021. Graph Barlow twins: A self-supervised representation learning framework for graphs. arXiv preprint arXiv:2106.02466 (2021).
    [4]
    Jin Chen, Defu Lian, Binbin Jin, Xu Huang, Kai Zheng, and Enhong Chen. 2022. Fast variational autoencoder with inverted multi-index for collaborative filtering. In Proceedings of the ACM Web Conference. 1944–1954.
    [5]
    Jin Chen, Defu Lian, Yucheng Li, Baoyun Wang, Kai Zheng, and Enhong Chen. 2022. Cache-augmented inbatch importance resampling for training recommender retriever. Adv. Neural Inf. Process. Syst. 35 (2022), 34817–34830.
    [6]
    Jin Chen, Guanyu Ye, Yan Zhao, Shuncheng Liu, Liwei Deng, Xu Chen, Rui Zhou, and Kai Zheng. 2022. Efficient join order selection learning with graph-based representation. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 97–107.
    [7]
    Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In Proceedings of the International Conference on Machine Learning.
    [8]
    Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2020. Adaptive universal generalized pagerank graph neural network. arXiv preprint arXiv:2006.07988 (2020).
    [9]
    M. Defferrard, X. Bresson, and P. Vandergheynst. 2016. Convolutional neural networks on graphs with fast localized spectral filtering[J]. Advances in Neural Information Processing Systems 29 (2016).
    [10]
    Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, lena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and ichal Valko. 2020. Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733 (2020).
    [11]
    William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Proceedings of the International Conference on Neural Information Processing (ICONIP’17).
    [12]
    Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view representation learning on graphs. In Proceedings of the International Conference on Machine Learning (ICML’20).
    [13]
    Rundong He, Zhongyi Han, Xiankai Lu, and Yilong Yin. 2022. Safe-student for safe deep semi-supervised learning with unseen-class unlabeled data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 14585–14594.
    [14]
    Rundong He, Zhongyi Han, Yang Yang, and Yilong Yin. 2022. Not all parameters should be treated equally: Deep safe semi-supervised learning under class distribution mismatch. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 6874–6883.
    [15]
    Jincheng Huang, Lun Du, Xu Chen, Qiang Fu, Shi Han, and Dongmei Zhang. 2023. Robust mid-pass filtering graph convolutional networks. In Proceedings of the ACM Web Conference. 328–338.
    [16]
    Jincheng Huang, Ping Li, Rui Huang, Na Chen, and Acong Zhang. 2023. Revisiting the role of heterophily in graph representation learning: An edge classification perspective. ACM Trans. Knowl. Discov. Data 18, 106 (2023), 1–17.
    [17]
    Jincheng Huang, Pin Li, and Kai Zhang. 2022. Semantic consistency for graph representation learning. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’22). IEEE, 1–8.
    [18]
    Baoyu Jing, Chanyoung Park, and Hanghang Tong. 2021. HDMI: High-order Deep Multiplex Infomax. In Proceedings of the Web Conference. 2414–2424.
    [19]
    Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
    [20]
    Thomas N. Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).
    [21]
    Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Predict then propagate: Graph neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997 (2018).
    [22]
    Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE Conference.
    [23]
    Meng Liu, Ke Liang, Yawei Zhao, Wenxuan Tu, Sihang Zhou, Xinwang Liu, and Kunlun He. 2023. Self-supervised temporal graph learning with temporal and structural intensity alignment. arXiv preprint arXiv:2302.07491 (2023).
    [24]
    Suyuan Liu, Xinwang Liu, Siwei Wang, Xin Niu, and En Zhu. 2022. Fast incomplete multi-view clustering with view-independent anchors. IEEE Trans. Neural Netw. Learn. Syst. (2022). DOI:
    [25]
    Suyuan Liu, Siwei Wang, Pei Zhang, Kai Xu, Xinwang Liu, Changwang Zhang, and Feng Gao. 2022. Efficient one-pass multi-view subspace clustering with consensus anchors. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 7576–7584.
    [26]
    Yue Liu, Ke Liang, Jun Xia, Sihang Zhou, Xihong Yang, Xinwang Liu, and Z. Stan Li. 2023. Dink-Net: Neural clustering on large graphs. In Proceedings of the International Conference on Machine Learning (ICML’23).
    [27]
    Yue Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu, Linxuan Song, Xihong Yang, and En Zhu. 2022. Deep graph clustering via dual correlation reduction. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’22).
    [28]
    Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu, Siwei Wang, Ke Liang, Wenxuan Tu, and Liang Li. 2023. Simple contrastive graph clustering. IEEE Trans. Neural Netw. Learn. Syst. (2023). DOI:
    [29]
    Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu, Zhen Wang, Ke Liang, Wenxuan Tu, Liang Li, Jingcan Duan, and Cancan Chen. 2023. Hard sample aware network for contrastive deep graph clustering. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’23), Vol. 37. 8914–8922.
    [30]
    Yue Liu, Sihang Zhou, Xinwang Liu, Wenxuan Tu, and Xihong Yang. 2022. Improved dual correlation reduction network. arXiv preprint arXiv:2202.12533 (2022).
    [31]
    Zepu Lu, Defu Lian, Jin Zhang, Zaixi Zhang, Chao Feng, Hao Wang, and Enhong Chen. 2023. Differentiable optimized product quantization and beyond. In Proceedings of the ACM Web Conference. 3353–3363.
    [32]
    Yujie Mo, Yuhuan Chen, Yajie Lei, Liang Peng, Xiaoshuang Shi, Changan Yuan, and Xiaofeng Zhu. 2023. Multiplex graph representation learning via dual correlation reduction. IEEE Trans. Knowl. Data Eng. 35, 12 (2023), 1–14. DOI:
    [33]
    Yujie Mo, Yajie Lei, Jialie Shen, Xiaoshuang Shi, Heng Tao Shen, and Xiaofeng Zhu. 2023. Disentangled multiplex graph representation learning. In Proceedings of the 40th International Conference on Machine Learning.
    [34]
    Yujie Mo, Liang Peng, Jie Xu, Xiaoshuang Shi, and Xiaofeng Zhu. 2022. Simple unsupervised graph representation learning. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’22). 7797–7805.
    [35]
    Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2018. Foundations of Machine Learning. MIT Press.
    [36]
    Kevin P. Murphy. 2012. Machine Learning: A Probabilistic Perspective. MIT Press.
    [37]
    Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1998. The pagerank citation ranking: Bringing order to the web. Technical report[J]. Stanford Digital Library Technologies Project.
    [38]
    S. K. Pal and S. Mitra. 1992. Multilayer perceptron, fuzzy sets, and classification. IEEE Transactions on Neural Networks 3, 5 (1992), 683–697.
    [39]
    Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020. Geom-GCN: Geometric graph convolutional networks. arXiv preprint arXiv:2002.05287 (2020).
    [40]
    Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou Huang. 2020. Graph representation learning via graphical mutual information maximization. In Proceedings of the Web Conference. 259–270.
    [41]
    Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868 (2018).
    [42]
    Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2019. InfoGraph: Unsupervised and semi-supervised graph-level representation learning via mutual information maximization. arXiv preprint arXiv:1908.01000 (2019).
    [43]
    Ke Sun, Zhanxing Zhu, and Zhouchen Lin. 2019. AdaGCN: Adaboosting graph convolutional networks into deep models. arXiv preprint arXiv:1908.05081 (2019).
    [44]
    Cheng Tan, Zhangyang Gao, Siyuan Li, and Stan Z. Li. 2022. SimVP: Towards simple yet powerful spatiotemporal predictive learning. arXiv preprint arXiv:2211.12509 (2022).
    [45]
    Cheng Tan, Zhangyang Gao, Lirong Wu, Siyuan Li, and Stan Z. Li. 2022. Hyperspherical consistency regularization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7244–7255.
    [46]
    Cheng Tan, Siyuan Li, Zhangyang Gao, Wenfei Guan, Zedong Wang, Zicheng Liu, Lirong Wu, and Stan Z. Li. 2023. OpenSTL: A comprehensive benchmark of spatio-temporal predictive learning. In Proceedings of the Conference on Neural Information Processing Systems Datasets and Benchmarks Track.
    [47]
    Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L. Dyer, Remi Munos, Petar Veličković, and Michal Valko. 2021. Large-scale representation learning on graphs via bootstrapping. In Proceedings of the International Conference on Learning Representations.
    [48]
    Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L. Dyer, Remi Munos, Petar Veličković, and Michal Valko. 2021. Large-scale representation learning on graphs via bootstrapping. arXiv preprint arXiv:2102.06514 (2021).
    [49]
    Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.Journal of Machine Learning Research 9, 11 (2008).
    [50]
    Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017).
    [51]
    Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon Hjelm. 2018. Deep graph infomax. arXiv preprint arXiv:1809.10341 (2018).
    [52]
    Vikas Verma, Kenji Kawaguchi, Alex Lamb, Juho Kannala, Yoshua Bengio, and David Lopez-Paz. 2019. Interpolation consistency training for semi-supervised learning. arXiv preprint arXiv:1903.03825 (2019).
    [53]
    Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Bengio. 2019. Manifold mixup: Better representations by interpolating hidden states. In Proceedings of the International Conference on Machine Learning. PMLR, 6438–6447.
    [54]
    Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, and Jian Tang. 2021. GraphMix: Improved training of GNNs for semi-supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 10024–10032.
    [55]
    Xinhang Wan, Jiyuan Liu, Weixuan Liang, Xinwang Liu, Yi Wen, and En Zhu. 2022. Continual multi-view clustering. In Proceedings of the 30th ACM International Conference on Multimedia (MM’22). Association for Computing Machinery, New York, NY, 3676–3684. DOI:
    [56]
    Xinhang Wan, Jiyuan Liu, Xinwang Liu, Siwei Wang, Yi Wen, Tianjiao Wan, Li Shen, and En Zhu. 2023. One-step Multi-view Clustering with Diverse Representation. arxiv:2306.05437 [cs.LG].
    [57]
    Xinhang Wan, Xinwang Liu, Jiyuan Liu, Siwei Wang, Yi Wen, Weixuan Liang, En Zhu, Zhe Liu, and Lu Zhou. 2023. Auto-weighted multi-view clustering for large-scale data. Proc. AAAI Conf. Artif. Intell. 37, 8 (June2023), 10078–10086. DOI:
    [58]
    Yiwei Wang, Yujun Cai, Yuxuan Liang, Henghui Ding, Changhu Wang, Siddharth Bhatia, and Bryan Hooi. 2021. Adaptive data augmentation on temporal graphs. Adv. Neural Inf. Process. Syst. 34 (2021).
    [59]
    Yiqi Wang, Chaozhuo Li, Wei Jin, Rui Li, Jianan Zhao, Jiliang Tang, and Xing Xie. 2022. Test-time training for graph neural networks. arXiv preprint arXiv:2210.08813 (2022).
    [60]
    Yiqi Wang, Chaozhuo Li, Mingzheng Li, Wei Jin, Yuming Liu, Hao Sun, Xing Xie, and Jiliang Tang. 2022. Localized graph collaborative filtering. In Proceedings of the SIAM International Conference on Data Mining (SDM’22). SIAM, 540–548.
    [61]
    Yiqi Wang, Chaozhuo Li, Zheng Liu, Mingzheng Li, Jiliang Tang, Xing Xie, Lei Chen, and Philip S. Yu. 2022. An adaptive graph pre-training framework for localized collaborative filtering. ACM Trans. Inf. Syst. 41, 2 (2022), 1–27.
    [62]
    Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. 2021. Mixup for node and graph classification. In Proceedings of the Web Conference.
    [63]
    Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. 2019. Simplifying graph convolutional networks. In Proceedings of the International Conference on Machine Learning.
    [64]
    Lirong Wu, Haitao Lin, Zhangyang Gao, Cheng Tan, and Stan. Z. Li. 2021. GraphMixup: Improving class-imbalanced node classification on graphs by self-supervised context prediction. arXiv preprint arXiv:2106.11133 (2021).
    [65]
    Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z. Li. 2022. SimGRACE: A simple framework for graph contrastive learning without data augmentation. arXiv preprint arXiv:2202.03104 (2022).
    [66]
    Jun Xia, Lecheng Zhang, Xiao Zhu, and Stan Z. Li. 2023. Why deep models often cannot beat non-deep counterparts on molecular property prediction? (2023).
    [67]
    Jun Xia, Yanqiao Zhu, Yuanqi Du, Yue Liu, and Stan Z. Li. 2023. A systematic survey of chemical pre-trained models. In Proceedings of the International Conference on Artificial Intelligence (IJCAI’23).
    [68]
    Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs with jumping knowledge networks. In Proceedings of the International Conference on Machine Learning (ICML’18).
    [69]
    Xihong Yang, Xiaochang Hu, Sihang Zhou, Xinwang Liu, and En Zhu. 2022. Interpolation-based contrastive learning for few-label semi-supervised learning. IEEE Trans. Neural Netw. Learn. Syst. (2022), 1–12. DOI:
    [70]
    Xihong Yang, Jin Jiaqi, Siwei Wang, Ke Liang, Yue Liu, Yi Wen, Suyuan Liu, Sihang Zhou, Xinwang Liu, and En Zhu. 2023. DealMVC: Dual contrastive calibration for multi-view clustering. In Proceedings of the 31st ACM International Conference on Multimedia. 337–346.
    [71]
    Xihong Yang, Yue Liu, Sihang Zhou, Siwei Wang, Xinwang Liu, and En Zhu. 2022. Contrastive deep graph clustering with learnable augmentation. arXiv preprint arXiv:2212.03559 (2022).
    [72]
    Xihong Yang, Yue Liu, Sihang Zhou, Siwei Wang, Wenxuan Tu, Qun Zheng, Xinwang Liu, Liming Fang, and En Zhu. 2023. Cluster-guided contrastive graph clustering network. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37. 10834–10842.
    [73]
    Xihong Yang, Cheng Tan, Yue Liu, Ke Liang, Siwei Wang, Sihang Zhou, Jun Xia, Stan Z. Li, Xinwang Liu, and En Zhu. 2023. Convert: Contrastive graph clustering with reliable augmentation. In Proceedings of the 31st ACM International Conference on Multimedia. 319–327.
    [74]
    Mingjia Yin, Hao Wang, Xiang Xu, Likang Wu, Sirui Zhao, Wei Guo, Yong Liu, Ruiming Tang, Defu Lian, and Enhong Chen. 2023. APGL4SR: A generic framework with adaptive and personalized global collaborative information in sequential recommendation. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. 3009–3019.
    [75]
    Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. 2020. Graph contrastive learning with augmentations. Adv. Neural Inf. Process. Syst. 33 (2020), 5812–5823.
    [76]
    Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. 2017. Mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017).
    [77]
    Zaixi Zhang and Qi Liu. 2023. Learning subpocket prototypes for generalizable structure-based drug design. In Proceedings of the International Conference on Machine Learning (ICML’23).
    [78]
    Z. Zhang, Z. Lu, H. Zhongkai, et al. 2024. Full-atom protein pocket design via iterative refinement. Advances in Neural Information Processing Systems 36 (2024).
    [79]
    Chuang Zhao, Hongke Zhao, Ming He, Jian Zhang, and Jianping Fan. 2023. Cross-domain recommendation via user interest alignment. In Proceedings of the ACM Web Conference. 887–896.
    [80]
    Chuang Zhao, Hongke Zhao, Xiaomeng Li, Ming He, Jiahui Wang, and Jianping Fan. 2023. Cross-domain recommendation via progressive structural alignment. IEEE Trans. Knowl. Data Eng. (2023). DOI:
    [81]
    Qun Zheng, Xihong Yang, Siwei Wang, Xinru An, and Qi Liu. 2023. Asymmetric double-winged multi-view clustering network for exploring diverse and consistent information. arXiv preprint arXiv:2309.00474 (2023).
    [82]
    Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020. Deep graph contrastive representation learning. In Proceedings of the ICML Workshop on Graph Representation Learning and Beyond. Retrieved from http://arxiv.org/abs/2006.04131
    [83]
    Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021. Graph contrastive learning with adaptive augmentation. In Proceedings of the Web Conference. 2069–2080.
    [84]
    Zhihao Zhu, Chenwang Wu, Rui Fan, Defu Lian, and Enhong Chen. 2023. Membership inference attacks against sequential recommender systems. In Proceedings of the ACM Web Conference 2023. 1208–1219.
    [85]
    Zhihao Zhu, Chenwang Wu, Min Zhou, Hao Liao, Defu Lian, and Enhong Chen. 2022. Resisting graph adversarial attack via cooperative homophilous augmentation. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 251–268.

    Cited By

    View all
    • (2024)Deep Fusion Clustering Network With Reliable Structure PreservationIEEE Transactions on Neural Networks and Learning Systems10.1109/TNNLS.2022.322091435:6(7792-7803)Online publication date: Jun-2024
    • (2024)Fast Continual Multi-View Clustering With Incomplete ViewsIEEE Transactions on Image Processing10.1109/TIP.2024.338897433(2995-3008)Online publication date: 2024

    Index Terms

    1. Mixed Graph Contrastive Network for Semi-supervised Node Classification

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Knowledge Discovery from Data
      ACM Transactions on Knowledge Discovery from Data  Volume 18, Issue 7
      August 2024
      505 pages
      ISSN:1556-4681
      EISSN:1556-472X
      DOI:10.1145/3613689
      • Editor:
      • Jian Pei
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 19 June 2024
      Online AM: 05 February 2024
      Accepted: 08 January 2024
      Revised: 12 December 2023
      Received: 18 August 2023
      Published in TKDD Volume 18, Issue 7

      Check for updates

      Author Tags

      1. Semi-supervised classification
      2. contrastive learning
      3. graph neural network

      Qualifiers

      • Research-article

      Funding Sources

      • National Key R&D Program of China
      • National Natural Science Foundation of China
      • Postgraduate Scientific Research Innovation Project in Hunan Province

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)369
      • Downloads (Last 6 weeks)124
      Reflects downloads up to 12 Aug 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Deep Fusion Clustering Network With Reliable Structure PreservationIEEE Transactions on Neural Networks and Learning Systems10.1109/TNNLS.2022.322091435:6(7792-7803)Online publication date: Jun-2024
      • (2024)Fast Continual Multi-View Clustering With Incomplete ViewsIEEE Transactions on Image Processing10.1109/TIP.2024.338897433(2995-3008)Online publication date: 2024

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      Full Text

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media