Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Tight Bounds of Circuits for Sum-Product Queries

Published: 14 May 2024 Publication History

Abstract

In this paper, we ask the following question: given a Boolean Conjunctive Query (CQ), what is the smallest circuit that computes the provenance polynomial of the query over a given semiring? We answer this question by giving upper and lower bounds. Notably, it is shown that any circuit F that computes a CQ over the tropical semiring must have size log |F| ≥ (1-ε) · da-entw for any ε >0, where da-entw is the degree-aware entropic width of the query. We show a circuit construction that matches this bound when the semiring is idempotent. The techniques we use combine several central notions in database theory: provenance polynomials, tree decompositions, and disjunctive Datalog programs. We extend our results to lower and upper bounds for formulas (i.e., circuits where each gate has outdegree one), and to bounds for non-Boolean CQs.

References

[1]
Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. 2015. Provenance Circuits for Trees and Treelike Instances. In ICALP (2) (Lecture Notes in Computer Science, Vol. 9135). Springer, 56--68.
[2]
Antoine Amarilli and Benny Kimelfeld. 2022. Uniform Reliability of Self-Join-Free Conjunctive Queries. Log. Methods Comput. Sci. 18, 4 (2022).
[3]
Albert Atserias, Martin Grohe, and Dániel Marx. 2008. Size Bounds and Query Plans for Relational Joins. In FOCS. IEEE Computer Society, 739--748.
[4]
Walter Baur and Volker Strassen. 1983. The Complexity of Partial Derivatives. Theor. Comput. Sci. 22 (1983), 317--330.
[5]
Markus Bläser. 2013. Fast Matrix Multiplication. Theory Comput. 5 (2013), 1--60.
[6]
Karl Bringmann, Nofar Carmeli, and Stefan Mengel. 2022. Tight Fine-Grained Bounds for Direct Access on Join Queries. In PODS. ACM, 427--436.
[7]
Nofar Carmeli and Luc Segoufin. 2023. Conjunctive Queries With Self-Joins, Towards a Fine-Grained Enumeration Complexity Analysis. In PODS. ACM, 277--289.
[8]
Terence H. Chan and Raymond W. Yeung. 2002. On a relation between information inequalities and group theory. IEEE Trans. Inf. Theory 48, 7 (2002), 1992--1995.
[9]
Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen. 2014. Circuits for Datalog Provenance. In ICDT. OpenProceedings. org, 201--212.
[10]
Tomasz Gogacz and Szymon Torunczyk. 2017. Entropy Bounds for Conjunctive Queries with Functional Dependencies. In ICDT (LIPIcs, Vol. 68). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 15:1--15:17.
[11]
Todd J. Green, Gregory Karvounarakis, and Val Tannen. 2007. Provenance semirings. In PODS. ACM, 31--40.
[12]
Stasys Jukna. 2015. Lower Bounds for Tropical Circuits and Dynamic Programs. Theory Comput. Syst. 57, 1 (2015), 160--194.
[13]
Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2020. Maintaining Triangle Queries under Updates. ACM Trans. Database Syst. 45, 3 (2020), 11:1--11:46.
[14]
Aziz Amezian El Khalfioui and Jef Wijsen. 2023. Consistent Query Answering for Primary Keys and Conjunctive Queries with Counting. In ICDT (LIPIcs, Vol. 255). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 23:1--23:19.
[15]
Mahmoud Abo Khamis, Phokion G. Kolaitis, Hung Q. Ngo, and Dan Suciu. 2021. Bag Query Containment and Information Theory. ACM Trans. Database Syst. 46, 3 (2021), 12:1--12:39.
[16]
Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and Maximilian Schleich. 2018. In-Database Learning with Sparse Tensors. In PODS. ACM, 325--340.
[17]
Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and Maximilian Schleich. 2020. Learning Models over Relational Data Using Sparse Tensors and Functional Dependencies. ACM Trans. Database Syst. 45, 2 (2020), 7:1--7:66.
[18]
Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. 2016. FAQ: Questions Asked Frequently. In PODS. ACM, 13--28.
[19]
Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2023. What do Shannon-type Inequalities, Submodular Width, and Disjunctive Datalog have to do with one another? arXiv:1612.02503
[20]
Balagopal Komarath, Anurag Pandey, and Chengot Sankaramenon Rahul. 2022. Monotone Arithmetic Complexity of Graph Homomorphism Polynomials. In ICALP (LIPIcs, Vol. 229). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 83:1--83:20.
[21]
Edward A. Lee and Alberto L. Sangiovanni-Vincentelli. 1998. A framework for comparing models of computation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 17, 12 (1998), 1217--1229.
[22]
Dan Olteanu. 2020. The Relational Data Borg is Learning. Proc. VLDB Endow. 13, 12 (2020), 3502--3515.
[23]
Dan Olteanu and Jiewen Huang. 2008. Using OBDDs for Efficient Query Evaluation on Probabilistic Databases. In SUM (Lecture Notes in Computer Science, Vol. 5291). Springer, 326--340.
[24]
Dan Olteanu and Jakub Závodný. 2015. Size Bounds for Factorised Representations of Query Results. ACM Trans. Database Syst. 40, 1 (2015), 2:1--2:44.
[25]
Neil Robertson and Paul D. Seymour. 1984. Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B 36, 1 (1984), 49--64.
[26]
John E. Savage. 1998. Models of computation - exploring the power of computing. Addison-Wesley.
[27]
Claus-Peter Schnorr. 1976. A Lower Bound on the Number of Additions in Monotone Computations. Theor. Comput. Sci. 2, 3 (1976), 305--315.
[28]
Amir Shaikhha, Maximilian Schleich, and Dan Olteanu. 2021. An Intermediate Representation for Hybrid Database and Machine Learning Workloads. Proc. VLDB Endow. 14, 12 (2021), 2831--2834.
[29]
Yilei Wang and Ke Yi. 2022. Query Evaluation by Circuits. In PODS. ACM, 67--78.

Index Terms

  1. Tight Bounds of Circuits for Sum-Product Queries

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the ACM on Management of Data
    Proceedings of the ACM on Management of Data  Volume 2, Issue 2
    PODS
    May 2024
    852 pages
    EISSN:2836-6573
    DOI:10.1145/3665155
    Issue’s Table of Contents
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 14 May 2024
    Published in PACMMOD Volume 2, Issue 2

    Author Tags

    1. circuit lower bound
    2. conjunctive queries
    3. disjunctive datalog

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 231
      Total Downloads
    • Downloads (Last 12 months)231
    • Downloads (Last 6 weeks)42
    Reflects downloads up to 09 Nov 2024

    Other Metrics

    Citations

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media