Learning Presolver Selection for Mixed-Integer Linear Programming
Abstract
References
Index Terms
- Learning Presolver Selection for Mixed-Integer Linear Programming
Recommendations
Globally Solving Nonconvex Quadratic Programs via Linear Integer Programming Techniques
We reformulate a (indefinite) quadratic program (QP) as a mixed-integer linear programming (MILP) problem by first reformulating a QP as a linear complementary problem, and then using binary variables and big-M constraints to model its complementary ...
Mixed-integer quadratic programming
This paper considers mixed-integer quadratic programs in which the objective function is quadratic in the integer and in the continuous variables, and the constraints are linear in the variables of both types. The generalized Benders' decomposition is a ...
On handling indicator constraints in mixed integer programming
Mixed integer programming (MIP) is commonly used to model indicator constraints, i.e., constraints that either hold or are relaxed depending on the value of a binary variable. Unfortunately, those models tend to lead to weak continuous relaxations and ...
Comments
Information & Contributors
Information
Published In
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Research-article
- Research
- Refereed limited
Conference
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 45Total Downloads
- Downloads (Last 12 months)45
- Downloads (Last 6 weeks)4
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign inFull Access
View options
View or Download as a PDF file.
PDFeReader
View online with eReader.
eReaderHTML Format
View this article in HTML Format.
HTML Format