Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3654823.3654842acmotherconferencesArticle/Chapter ViewAbstractPublication PagescacmlConference Proceedingsconference-collections
research-article

Segmentation on OCTA Image of Fundus in vivo based on Attention Module

Published: 29 May 2024 Publication History

Abstract

Diabetic retinopathy (DR) is one of the serious complication of diabetes, which will have a certain influence on vision and even lead to blindness. Early detection and treatment of DR is very important. With the increasing number of patients with retinal diseases, there is an urgent need for automatic diagnosis of retinal diseases. To address the problem of DR lesion segmentation in Optical Coherence Tomography fundus images, we propose a novel DR lesion segmentation method, namely pyramid map attention-based convolutional neural network (PACN). To learn the effective feature, we design the Bidirectional Pyramid Attention Module (BPAM). With the BPAM subnetwork, the receptive field can be increased and improve the performance of the model. The information of code and dataset can be viewed at URL https://17861318579.github.io/PACN. Experimental results demonstrate the effectiveness of our new method.

References

[1]
[1] Yi,Z.;Wang,B.Y.;He,X.D.;Cui,S.S.;Shao,L. DR-GAN: Conditional Generative Adversarial Network for Fine-Grained Lesion Synthesis on Diabetic Retinopathy Images. IEEE journal of biomedical and health informatics2022, 26(1), 56–66.
[2]
[2] Salamat,N.;Missen,M.M.S.;Rashid,A. Diabetic retinopathy techniques in retinal images: A review. Artif. Intell. Medicine2019, 97, 168–188.
[3]
[3] Lalithadevi,B.;Krishnaveni,S. Detection of diabetic retinopathy and related retinal disorders using fundus images based on deep learning and image processing techniques: A comprehensive review. Concurr. Comput. Pract. Exp.2022, 34(19).
[4]
[4] Nagpal,D.;Panda,S.N.;Malarvel,M.;Pattanaik,P.A.;Khan,M.Z. A review of diabetic retinopathy: Datasets, approaches, evaluation metrics and future trends. J. King Saud Univ. Comput. Inf. Sci.2022, 34(9), 7138–7152.
[5]
[5] Gargeya,R.;Leng,T. Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology and Eye Diseases2017, 124(7), 962–969.
[6]
[6] Joanne,W.Y.Y.;Sophie,L.R.;Ryo,K.;Ecosse,L.L.;Jonathan,W.K.;Toke,B.;Shih-Jen,C.;Jacqueline,M.D.;Astrid,F.;Jakob,G.;Steven,H.;Richard,F.H. Global prevalence and major risk factors of diabetic retinopathy. Diabetes care2013, 35(3), 556–564.
[7]
[7] Eladawi,N.;Elmogy,M.;Ghazal,M.;Fraiwan,L.;Aboelfetouh,A.;Riad,A.E.M.;Sandhu,H.;Keynton,R.;El-Baz,A. Early Signs Detection of Diabetic Retinopathy Using Optical Coherence Tomography Angiography Scans Based on 3D Multi-Path Convolutional Neural Network. ICIP2019, 1390–1394.
[8]
[8] Husvogt,L.;Moult,E.;Waheed,N.;Fujimoto,J.G.; Maier,A.K. Abstract: Efficient Labeling of Optical Coherence Tomography Angiography Data using Eye Tracking. Bildverarbeitung für die Medizi2018, 20–21.
[9]
[9] Guo,M.L.;Zhao,M.;Cheong,A.M.Y.;Corvi,F.;Chen,X.;Chen,S.P.;Zhou,Y.J.;Lam,A.K.C. Can deep learning improve the automatic segmentation of deep foveal avascular zone in optical coherence tomography angiography. Biomed. Signal Process. Control.2021, 66, 102456.
[10]
[10] Jiang,Z.;Huang,Z.Y.;Qiu,B.;Meng,X.X.;You,Y.F.;Liu,X.;Geng,M.F.;Liu,G.J.;Zhou,C.Q.;Yang,K.;Maier,A.; Ren,Q.;Lu,Y.Y. Weakly Supervised Deep Learning-Based Optical Coherence Tomography Angiography. IEEE Trans. Medical Imaging2021, 40(2), 688–698.
[11]
[11] Skalet,A.H.;Li,Y.;Lu,C.D.;Jia,Y.L.;Lee,B.K.;Husvogt,L.;Maier,A.K.;Fujimoto,J.G.;Thomas,C.R.;Huang,D. Optical Coherence Tomography Angiography Characteristics of Iris Melanocytic Tumors. Ophthalmology and Eye Diseases2017, 124(2), 197–204.
[12]
[12] Sambhav,K.;Grover,S.;Chalam,K.V. The application of optical coherence tomography angiography in retinal diseases. Survey of Ophthalmology2017, 62(6), 838–866.
[13]
[13] Jiang,Z.;Huang,Z.Y.;Qiu,B.;Meng,X.X.;You,Y.F.;Liu,X.;Liu,G.J.;Zhou,C.Q.;Yang,K.;Maier,A.;Ren,Q.S.;Lu,Y.Y. Comparative study of deep learning models for optical coherence tomography angiography. Biomedical optics express2020, 11(3), 1580–1597.
[14]
[14] Cui,Y.;Zhu,Y.;Wang,J.C.; Lu,Y.F.;Zeng,R.;Katz,R.;Vingopoulos,F.;Le,R.;Laíns,I.;Wu,D.M.;Eliott,D.;Vavvas,G.D. Comparison Of Widefield Swept-Source Optical Coherence Tomography Angiography With Ultra-Widefield Colour Fundus Photography And Fluorescein Angiography For Detection Of Lesions In Diabetic Retinopathy. British Journal of Ophthalmology2021, 105(4), 577–581.
[15]
[15] Sun,Z.H.;Yang,D.W.;Tang,Z.Q.;Ng,D.S.;Cheung,C.Y. Optical coherence tomography angiography in diabetic retinopathy:an updated review. Eye2020, 35(1), 149–161.
[16]
[16] Alam,M.;Zhang,Y.;Lim,I.J.;Chan,V.P.R.;Yang,M.;Yao,X.C. Quantitative optical coherence tomography angiography features for objective classification and staging of diabetic retinopathy. Retina2018, 40(2), 322–332.
[17]
[17] Hong,J.;Tan,B.Y.;Quang,N.D.;Gupta,P.;Lin,E.;Wong,D.;Ang,M.;Lamoureux,E.;Schmetterer,L.;Chua,J. Intra-session repeatability of quantitative metrics using widefield optical coherence tomography angiography (OCTA) in elderly subjects. Acta Ophthalmol2019, 98(5), E570–E578.
[18]
[18] Xue,K.;Qian,J.;Zhang,Y. Spectral domain-optical coherence tomography analysis of choroid osteoma. Chinese Journal of Ocular Fundus Diseases2013, 96(2), 224–228.
[19]
[19] Raghavendra,U.;Fujita,H.;Bhandary,S.V.;Gudigar,A.;Tan,J.;Acharya,U.R. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf. Sci.2018, 441, 41–49.
[20]
[20] Shishir,M.;Bilas,P.R.;Rajendra,A.U. Automated Diagnosis of Glaucoma Using Empirical Wavelet Transform and Correntropy Features Extracted From Fundus Images. IEEE J. Biomed. Health Informatics2017, 21(3), 803–813.
[21]
[21] Minaee,S.;Boykov,Y.;Porikli,F.;Plaza,A.;Kehtarnavaz,N.;Terzopoulos,D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell.2022, 44(7), 3523–3542.
[22]
[22] Chen,C.;Qiu,H.Q.;Giacomo,T.;Duan,J.M.;Bai,W.J.;Daniel,R. Deep learning for cardiac image segmentation: A review. Frontiers in cardiovascular medicine2020.
[23]
[23] Nima,T.;Laura,J.;Li,Q.;Jeffrey,C.;Wu,Z.H.;Ding,X.W. Embracing Imperfect Datasets: A Review of Deep Learning Solutions for Medical Image Segmentation. Medical Image Anal.2020, 63, 101693.
[24]
[24] Wu,X.W.;Sahoo,D.;Hoi,S.C.H. Recent Advances in Deep Learning for Object Detection. Neurocomputing2020, 396, 39–64.
[25]
[25] Tabernik,D.;Sela,S.;Skvarc,J.;Skocaj,D. Segmentation-based deep-learning approach for surface-defect detection. J. Intell. Manuf.2020, 31(3), 759–776.
[26]
[26] GörkemA.;Ilkay,U. Image classification with deep learning in the presence of noisy labels: A survey. Knowl. Based Syst.2021, 215, 106771.
[27]
[27] Wang,P.;Fan,E.;Wang,P. Comparative Analysis Of Image Classification Algorithms Based On Traditional Machine Learning And Deep Learning. Pattern Recognit. Lett.2021, 141, 61–67.
[28]
[28] Liu,S.J.;Shi,Q.;Zhang,L.P. Few-Shot Hyperspectral Image Classification With Unknown Classes Using Multitask Deep Learning. IEEE Trans. Geosci. Remote. Sens.2021, 59(6), 5085–5102.
[29]
[29] Zhao,H.S.;Shi,J.P.;Qi,X.J.;Wang,X.G.;Jia,J.Y. Pyramid Scene Parsing Network. CVPR2017, 6230–6239.
[30]
[30] Song,H.J.;Wang,Y.F.;Zeng,S.J.;Guo,X.Y.;Li,Z.H. OAU-net: Outlined Attention U-net for biomedical image segmentation. Biomed. Signal Process. Control.2023, 79(Part), 104038.
[31]
[31] Hung,N.B.;Nguyen,T.D.;Chien,T.V.;Sang,D.V. AG-ResUNet++: AN Improved Encoder-Decoder Based Method for Polyp Segmentation in Colonoscopy Images. RIVF 2021, 1–6.
[32]
[32] Zhuang,Z.M.;Raj,A.N.J.;Jain,A.;Nersisson,R.;Chaurasia,S.;Lakshmanan,N.Li,M.;Murugappan,M. Nipple Segmentation and Localization Using Modified U-Net on Breast Ultrasound Images. J. Medical Imaging Health Informatics2019, 9(9), 1827–1837.
[33]
[33] Porwal,P.;Pachade,S.;Kamble,R.;Kokare,M.;Deshmukh,G.;Sahasrabuddhe,V.;Mériaudeau,F. Indian diabetic retinopathy image dataset (IDRiD): A database for diabetic retinopathy screening research. Data2018, 3(3), 25.
[34]
[34] B. Sarica, D. Z. Seker and B. Bayram, “A dense residual U-net for multiple sclerosis lesions segmentation from multi-sequence 3D MR images,” Int. J. Medical Informatics., 2023, 170, 104965.
[35]
[35] M. Wang, W. F. Zhu, F. Shi, J. Z. Su, H. Y. Chen, K. Yu, Y. Zhou, Y. Y. Peng, Z. Y. Chen and X. J. Chen, “MsTGANet: Automatic Drusen Segmentation From Retinal OCT Images,” IEEE Trans. Medical Imaging., 2023, (41)2, 394-406.
[36]
[36] R. Rasti, A. Biglari, M. Rezapourian, Z. Y. Yang and S. Farsiu, “RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional Network for Retinal OCT Fluid Segmentation,” IEEE Trans. Medical Imaging., 2022, (42)5, 1413-1423.

Index Terms

  1. Segmentation on OCTA Image of Fundus in vivo based on Attention Module

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    CACML '24: Proceedings of the 2024 3rd Asia Conference on Algorithms, Computing and Machine Learning
    March 2024
    478 pages
    ISBN:9798400716416
    DOI:10.1145/3654823
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 29 May 2024

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Convolutional neural network
    2. Diabetic retinopathy
    3. Lesion segmentation

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    CACML 2024

    Acceptance Rates

    Overall Acceptance Rate 93 of 241 submissions, 39%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 10
      Total Downloads
    • Downloads (Last 12 months)10
    • Downloads (Last 6 weeks)5
    Reflects downloads up to 26 Sep 2024

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media