Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3654823.3654881acmotherconferencesArticle/Chapter ViewAbstractPublication PagescacmlConference Proceedingsconference-collections
research-article

Unsupervised Deep Topology Embedded Characterization of Single-Cell Chromatin Accessibility Profiles

Published: 29 May 2024 Publication History

Abstract

Cell clustering plays a crucial role in the analysis of single-cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) data. Single-cell deep learning models have gained significant popularity for characterizing low-dimensional embedding feature representations to facilitate clustering. However, these models are prone to technical artifacts, noise, and missing values, which can negatively affect their overall performance. To address these limitations, we propose the Single-Cell Deep Topology Embedded Characterization (scDTEC) model, which obtains a fused representation of chromatin accessibility profiles and cell topological information in a low-dimensional space. First, scDTEC employs a topology variational autoencoder to transform high-dimensional data into latent representations that capture chromatin accessibility profiles with cellular topological information. Then, scDTEC employs a contrastive loss to maximize the consistency between the anchor graph derived from the raw data and the learning graph generated by the graph learner model and uses the anchor graph as the learning objective. Finally, scDTEC employs a joint optimization paradigm to simultaneously optimize the embedding of cell fusion information and the updating of cell topology structure, guiding the precise partitioning of cell clusters. Real-data experiments and extensive simulation reveal the superiority of scDTEC over a variety of cutting-edge methods.

References

[1]
Matthew Amodio, David Van Dijk, Krishnan Srinivasan, William S Chen, Hussein Mohsen, Kevin R Moon, Allison Campbell, Yujiao Zhao, Xiaomei Wang, Manjunatha Venkataswamy, 2019. Exploring single-cell data with deep multitasking neural networks. Nature methods 16, 11 (2019), 1139–1145. https://doi.org/10.1038/s41592-019-0576-7.
[2]
Tal Ashuach, Daniel A Reidenbach, Adam Gayoso, and Nir Yosef. 2022. PeakVI: A deep generative model for single-cell chromatin accessibility analysis. Cell reports methods 2, 3 (2022). https://doi.org/10.1016/j.crmeth.2022.100182.
[3]
Carmen Bravo González-Blas, Liesbeth Minnoye, Dafni Papasokrati, Sara Aibar, Gert Hulselmans, Valerie Christiaens, Kristofer Davie, Jasper Wouters, and Stein Aerts. 2019. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. Nature methods 16, 5 (2019), 397–400. https://doi.org/10.1038/s41592-019-0367-1.
[4]
Jason D Buenrostro, Beijing Wu, Ulrike M Litzenburger, Dave Ruff, Michael L Gonzales, Michael P Snyder, Howard Y Chang, and William J Greenleaf. 2015. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 7561 (2015), 486–490. https://doi.org/10.1038/nature14590.
[5]
Xi Chen, Ricardo J Miragaia, Kedar Nath Natarajan, and Sarah A Teichmann. 2018. A rapid and robust method for single cell chromatin accessibility profiling. Nature communications 9, 1 (2018), 5345. https://doi.org/10.1038/s41467-018-07771-0.
[6]
Yue Cheng, Yanchi Su, Zhuohan Yu, Yanchun Liang, Ka-Chun Wong, and Xiangtao Li. 2023. Unsupervised Deep Embedded Fusion Representation of Single-Cell Transcriptomics. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37. 5036–5044. https://doi.org/10.1609/aaai.v37i4.25631.
[7]
M Ryan Corces, Jeffrey M Granja, Shadi Shams, Bryan H Louie, Jose A Seoane, Wanding Zhou, Tiago C Silva, Clarice Groeneveld, Christopher K Wong, Seung Woo Cho, 2018. The chromatin accessibility landscape of primary human cancers. Science 362, 6413 (2018), eaav1898. https://www.science.org/doi/10.1126/science.aav1898.
[8]
Darren A Cusanovich, Riza Daza, Andrew Adey, Hannah A Pliner, Lena Christiansen, Kevin L Gunderson, Frank J Steemers, Cole Trapnell, and Jay Shendure. 2015. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 6237 (2015), 910–914. https://doi.org/10.1126/science.aab1601.
[9]
Darren A Cusanovich, Andrew J Hill, Delasa Aghamirzaie, Riza M Daza, Hannah A Pliner, Joel B Berletch, Galina N Filippova, Xingfan Huang, Lena Christiansen, William S DeWitt, 2018. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell 174, 5 (2018), 1309–1324. https://doi.org/10.1016/j.cell.2018.06.052.
[10]
Ashutosh Kumar Dubey, Umesh Gupta, and Sonal Jain. 2016. Analysis of k-means clustering approach on the breast cancer Wisconsin dataset. International journal of computer assisted radiology and surgery 11 (2016), 2033–2047. https://doi.org/10.1007/s11548-016-1437-9.
[11]
Harold Hotelling. 1933. Analysis of a complex of statistical variables into principal components.Journal of educational psychology 24, 6 (1933), 417. https://doi.org/10.1037/h0071325.
[12]
Stephen C Johnson. 1967. Hierarchical clustering schemes. Psychometrika 32, 3 (1967), 241–254. https://doi.org/10.1007/BF02289588.
[13]
Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. 2009. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. Acm transactions on knowledge discovery from data (tkdd) 3, 1 (2009), 1–58. https://doi.org/10.1145/1497577.1497578.
[14]
Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. 2022. Towards unsupervised deep graph structure learning. In Proceedings of the ACM Web Conference 2022. 1392–1403. https://doi.org/10.1145/3485447.3512186.
[15]
Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. 2018. Deep generative modeling for single-cell transcriptomics. Nature methods 15, 12 (2018), 1053–1058. https://doi.org/10.1038/s41592-018-0229-2.
[16]
James MacQueen 1967. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Vol. 1. Oakland, CA, USA, 281–297. https://digitalassets.lib.berkeley.edu/math/ucb/text/math_s5_v1_article-17.pdf.
[17]
Bethany Percha and Russ B Altman. 2015. Learning the structure of biomedical relationships from unstructured text. PLoS computational biology 11, 7 (2015), e1004216. https://doi.org/10.1371/journal.pcbi.1004216.
[18]
Alicia N Schep, Beijing Wu, Jason D Buenrostro, and William J Greenleaf. 2017. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nature methods 14, 10 (2017), 975–978. https://doi.org/10.1038/nmeth.4401.
[19]
Tian Tian, Ji Wan, Qi Song, and Zhi Wei. 2019. Clustering single-cell RNA-seq data with a model-based deep learning approach. Nature Machine Intelligence 1, 4 (2019), 191–198. https://doi.org/10.1038/s42256-019-0037-0.
[20]
Tian Tian, Jie Zhang, Xiang Lin, Zhi Wei, and Hakon Hakonarson. 2021. Model-based deep embedding for constrained clustering analysis of single cell RNA-seq data. Nature communications 12, 1 (2021), 1873. https://doi.org/10.1038/s41467-021-22008-3.
[21]
F Alexander Wolf, Philipp Angerer, and Fabian J Theis. 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome biology 19 (2018), 1–5.
[22]
Lei Xiong, Kui Xu, Kang Tian, Yanqiu Shao, Lei Tang, Ge Gao, Michael Zhang, Tao Jiang, and Qiangfeng Cliff Zhang. 2019. SCALE method for single-cell ATAC-seq analysis via latent feature extraction. Nature communications 10, 1 (2019), 4576. https://doi.org/10.1038/s41467-019-12630-7.
[23]
Zhuohan Yu, Yifu Lu, Yunhe Wang, Fan Tang, Ka-Chun Wong, and Xiangtao Li. 2022. Zinb-based graph embedding autoencoder for single-cell rna-seq interpretations. In Proceedings of the AAAI conference on artificial intelligence, Vol. 36. 4671–4679. https://doi.org/10.1609/aaai.v36i4.20392.
[24]
Zhuohan Yu, Yanchi Su, Yifu Lu, Yuning Yang, Fuzhou Wang, Shixiong Zhang, Yi Chang, Ka-Chun Wong, and Xiangtao Li. 2023. Topological identification and interpretation for single-cell gene regulation elucidation across multiple platforms using scMGCA. Nature Communications 14, 1 (2023), 400. https://doi.org/10.1038/s41467-023-36134-7.
[25]
Mahdi Zamanighomi, Zhixiang Lin, Timothy Daley, Xi Chen, Zhana Duren, Alicia Schep, William J Greenleaf, and Wing Hung Wong. 2018. Unsupervised clustering and epigenetic classification of single cells. Nature communications 9, 1 (2018), 2410. https://doi.org/10.1038/s41467-018-04629-3.

Index Terms

  1. Unsupervised Deep Topology Embedded Characterization of Single-Cell Chromatin Accessibility Profiles

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    CACML '24: Proceedings of the 2024 3rd Asia Conference on Algorithms, Computing and Machine Learning
    March 2024
    478 pages
    ISBN:9798400716416
    DOI:10.1145/3654823
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 29 May 2024

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. contrastive learning
    2. deep clustering
    3. graph neural network
    4. self-bootstrapping
    5. single cell

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    CACML 2024

    Acceptance Rates

    Overall Acceptance Rate 93 of 241 submissions, 39%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 21
      Total Downloads
    • Downloads (Last 12 months)21
    • Downloads (Last 6 weeks)9
    Reflects downloads up to 26 Sep 2024

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media