Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Holographic Parallax Improves 3D Perceptual Realism

Published: 19 July 2024 Publication History

Abstract

Holographic near-eye displays are a promising technology to solve long-standing challenges in virtual and augmented reality display systems. Over the last few years, many different computer-generated holography (CGH) algorithms have been proposed that are supervised by different types of target content, such as 2.5D RGB-depth maps, 3D focal stacks, and 4D light fields. It is unclear, however, what the perceptual implications are of the choice of algorithm and target content type. In this work, we build a perceptual testbed of a full-color, high-quality holographic near-eye display. Under natural viewing conditions, we examine the effects of various CGH supervision formats and conduct user studies to assess their perceptual impacts on 3D realism. Our results indicate that CGH algorithms designed for specific viewpoints exhibit noticeable deficiencies in achieving 3D realism. In contrast, holograms incorporating parallax cues consistently outperform other formats across different viewing conditions, including the center of the eyebox. This finding is particularly interesting and suggests that the inclusion of parallax cues in CGH rendering plays a crucial role in enhancing the overall quality of the holographic experience. This work represents an initial stride towards delivering a perceptually realistic 3D experience with holographic near-eye displays.

Supplementary Material

ZIP File (papers_410.zip)
supplemental

References

[1]
A. T. Bahill, M. R. Clark, and L. Stark. The main sequence, a tool for studying human eye movements. Mathematical biosciences, 24(3--4):191--204, 1975.
[2]
R. Bogacz, E. Brown, J. Moehlis, P. Holmes, and J. D. Cohen. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113(4):700, 2006.
[3]
O. Bryngdahl and A. Lohmann. Single-sideband holography. JOSA, 58(5):620--624, 1968.
[4]
P. Chakravarthula, E. Tseng, T. Srivastava, H. Fuchs, and F. Heide. Learned hardware-in-the-loop phase retrieval for holographic near-eye displays. ACM Transactions on Graphics (TOG), 39(6):1--18, 2020.
[5]
P. Chakravarthula, S.-H. Baek, F. Schiffers, E. Tseng, G. Kuo, A. Maimone, N. Matsuda, O. Cossairt, D. Lanman, and F. Heide. Pupil-aware holography. ACM Transactions on Graphics (TOG), 41(6):1--15, 2022.
[6]
J.-H. R. Chang, A. Levin, B. V. Kumar, and A. C. Sankaranarayanan. Towards occlusion-aware multifocal displays. ACM Transactions on Graphics (TOG), 39(4):68--1, 2020.
[7]
C. Chen, B. Lee, N.-N. Li, M. Chae, D. Wang, Q.-H. Wang, and B. Lee. Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function. Opt. Express, 29(10):15089--15103, 2021.
[8]
S. Choi, M. Gopakumar, Y. Peng, J. Kim, and G. Wetzstein. Neural 3d holography: Learning accurate wave propagation models for 3d holographic virtual and augmented reality displays. ACM Trans. Graph. (SIGGRAPH Asia), 2021.
[9]
S. Choi, M. Gopakumar, Y. Peng, J. Kim, M. O'Toole, and G. Wetzstein. Time-multiplexed neural holography: a flexible framework for holographic near-eye displays with fast heavily-quantized spatial light modulators. In ACM SIGGRAPH 2022 Conference Proceedings, pages 1--9, 2022.
[10]
V. R. Curtis, N. W. Caira, J. Xu, A. G. Sata, and N. C. Pégard. Dcgh: dynamic computer generated holography for speckle-free, high fidelity 3d displays. In 2021 IEEE Virtual Reality and 3D User Interfaces (VR), pages 1--9. IEEE, 2021.
[11]
J. E. Cutting and P. M. Vishton. Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In Perception of space and motion, pages 69--117. Elsevier, 1995.
[12]
S. De Groot and J. Gebhard. Pupil size as determined by adapting luminance. JOSA, 42 (7):492--495, 1952.
[13]
A. Duane. Normal values of the accommodation at all ages. Journal of the American Medical Association, 59(12):1010--1013, 1912.
[14]
J. W. Goodman. Introduction to Fourier optics. Roberts and Company Publishers, 2005.
[15]
P. Guan, O. Mercier, M. Shvartsman, and D. Lanman. Perceptual requirements for eye-tracked distortion correction in vr. In ACM SIGGRAPH 2022 Conference Proceedings, pages 1--8, 2022.
[16]
B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. Foveated 3d graphics. ACM transactions on Graphics (tOG), 31(6):1--10, 2012.
[17]
D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of vision, 8(3): 33--33, 2008.
[18]
C. Jang, K. Bang, G. Li, and B. Lee. Holographic near-eye display with expanded eye-box. ACM Trans. Graph., 37(6), dec 2018.
[19]
C. Jang, K. Bang, M. Chae, B. Lee, and D. Lanman. Waveguide holography for 3d augmented reality glasses. Nature Communications, 15(1):66, 2024.
[20]
E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.
[21]
H. Kang, E. Stoykova, and H. Yoshikawa. Fast phase-added stereogram algorithm for generation of photorealistic 3d content. Applied optics, 55(3):A135--A143, 2016.
[22]
K. Kavaklı, Y. Itoh, H. Urey, and K. Akşit. Realistic defocus blur for multiplane computergenerated holography. In 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR), pages 418--426. IEEE, 2023.
[23]
D. Kim, S.-W. Nam, K. Bang, B. Lee, S. Lee, Y. Jeong, J.-M. Seo, and B. Lee. Vision-correcting holographic display: evaluation of aberration correcting hologram. Biomedical Optics Express, 12(8):5179--5195, 2021.
[24]
D. Kim, S.-W. Nam, B. Lee, J.-M. Seo, and B. Lee. Accommodative holography: improving accommodation response for perceptually realistic holographic displays. ACM Transactions on Graphics (TOG), 41(4):1--15, 2022.
[25]
V. Kiran Adhikarla, M. Vinkler, D. Sumin, R. K. Mantiuk, K. Myszkowski, H.-P. Seidel, and P. Didyk. Towards a quality metric for dense light fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 58--67, 2017.
[26]
R. Konrad, A. Angelopoulos, and G. Wetzstein. Gaze-contingent ocular parallax rendering for virtual reality. ACM Transactions on Graphics (TOG), 39(2):1--12, 2020.
[27]
G. Kuo, L. Waller, R. Ng, and A. Maimone. High resolution étendue expansion for holographic displays. ACM Transactions on Graphics (TOG), 39(4):66--1, 2020.
[28]
B. Lee, D. Yoo, J. Jeong, S. Lee, D. Lee, and B. Lee. Wide-angle speckleless dmd holographic display using structured illumination with temporal multiplexing. Optics Letters, 45(8):2148--2151, 2020.
[29]
B. Lee, D. Kim, S. Lee, C. Chen, and B. Lee. High-contrast, speckle-free, true 3d holography via binary cgh optimization. Scientific reports, 12(1):2811, 2022.
[30]
A. W. Lohmann and D. Paris. Binary fraunhofer holograms, generated by computer. Applied optics, 6(10):1739--1748, 1967.
[31]
A. Maimone, A. Georgiou, and J. S. Kollin. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. (SIGGRAPH), 36(4):85, 2017.
[32]
R. K. Mantiuk, G. Denes, A. Chapiro, A. Kaplanyan, G. Rufo, R. Bachy, T. Lian, and A. Patney. Fovvideovdp: A visible difference predictor for wide field-of-view video. ACM Transactions on Graphics (TOG), 40(4):1--19, 2021.
[33]
J. March, A. Krishnan, S. Watt, M. Wernikowski, H. Gao, A. Ö. Yöntem, and R. Mantiuk. Impact of correct and simulated focus cues on perceived realism. In SIGGRAPH Asia 2022 Conference Papers, pages 1--9, 2022.
[34]
K. Matsushima and S. Nakahara. Extremely high-definition full-parallax computergenerated hologram created by the polygon-based method. Applied optics, 48(34): H54--H63, 2009.
[35]
A. Mehrfard, J. Fotouhi, G. Taylor, T. Forster, N. Navab, and B. Fuerst. A comparative analysis of virtual reality head-mounted display systems. arXiv preprint arXiv:1912.02913, 2019.
[36]
O. Mercier, Y. Sulai, K. Mackenzie, M. Zannoli, J. Hillis, D. Nowrouzezahrai, and D. Lanman. Fast gaze-contingent optimal decompositions for multifocal displays. ACM Transactions on Graphics (TOG), 36(6):1--15, 2017.
[37]
S. Monin, A. C. Sankaranarayanan, and A. Levin. Analyzing phase masks for wide étendue holographic displays. In 2022 IEEE International Conference on Computational Photography (ICCP), pages 1--12. IEEE, 2022a.
[38]
S. Monin, A. C. Sankaranarayanan, and A. Levin. Exponentially-wide etendue displays using a tilting cascade. In 2022 IEEE International Conference on Computational Photography (ICCP), pages 1--12. IEEE, 2022b.
[39]
J. J. Naji and T. C. Freeman. Perceiving depth order during pursuit eye movement. Vision research, 44(26):3025--3034, 2004.
[40]
S.-W. Nam, Y. Kim, D. Kim, and Y. Jeong. Depolarized holography with polarization-multiplexing metasurface. ACM Transactions on Graphics (TOG), 42(6):1--16, 2023.
[41]
P. Napieralski and F. Rynkiewicz. Modeling human pupil dilation to decouple the pupillary light reflex. Open Physics, 17(1):458--467, 2019.
[42]
M. Nawrot. Eye movements provide the extra-retinal signal required for the perception of depth from motion parallax. Vision research, 43(14):1553--1562, 2003.
[43]
R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan. Light field photography with a hand-held plenoptic camera. PhD thesis, Stanford University, 2005.
[44]
N. Padmanaban, Y. Peng, and G. Wetzstein. Holographic near-eye displays based on overlap-add stereograms. ACM Trans. Graph., 38(6), 2019a.
[45]
N. Padmanaban, Y. Peng, and G. Wetzstein. Holographic near-eye displays based on overlap-add stereograms. ACM Transactions on Graphics (TOG), 38(6):1--13, 2019b.
[46]
J. Park, K. Lee, and Y. Park. Ultrathin wide-angle large-area digital 3d holographic display using a non-periodic photon sieve. Nature communications, 10(1):1304, 2019.
[47]
J.-H. Park. Recent progress in computer-generated holography for three-dimensional scenes. Journal of Information Display, 18(1):1--12, 2017.
[48]
J.-H. Park. Efficient calculation scheme for high pixel resolution non-hogel-based computer generated hologram from light field. Optics Express, 28(5):6663--6683, 2020.
[49]
J.-H. Park and M. Askari. Non-hogel-based computer generated hologram from light field using complex field recovery technique from wigner distribution function. Optics express, 27(3):2562--2574, 2019.
[50]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems, 32, 2019.
[51]
Y. Peng, S. Choi, N. Padmanaban, and G. Wetzstein. Neural holography with camera-in-the-loop training. ACM Trans. Graph., 39(6):1--14, 2020.
[52]
M. Perez-Ortiz and R. K. Mantiuk. A practical guide and software for analysing pairwise comparison experiments. arXiv preprint arXiv:1712.03686, 2017.
[53]
K. Ratnam, R. Konrad, D. Lanman, and M. Zannoli. Retinal image quality in near-eye pupil-steered systems. Optics Express, 27(26):38289--38311, 2019.
[54]
L. Shi, F.-C. Huang, W. Lopes, W. Matusik, and D. Luebke. Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3d computer graphics. ACM Trans. Graph., 36(6), 2017.
[55]
L. Shi, B. Li, C. Kim, P. Kellnhofer, and W. Matusik. Towards real-time photorealistic 3d holography with deep neural networks. Nature, 591(7849):234--239, 2021.
[56]
L. Shi, B. Li, and W. Matusik. End-to-end learning of 3d phase-only holograms for holographic display. Light: Science & Applications, 11(1):247, 2022.
[57]
A. Symeonidou, D. Blinder, A. Munteanu, and P. Schelkens. Computer-generated holograms by multiple wavefront recording plane method with occlusion culling. Optics express, 23(17):22149--22161, 2015.
[58]
F. Wang, T. Ito, and T. Shimobaba. High-speed rendering pipeline for polygon-based holograms. Photonics Research, 11(2):313--328, 2023.
[59]
A. B. Watson and D. G. Pelli. Quest: A bayesian adaptive psychometric method. Perception & psychophysics, 33(2):113--120, 1983.
[60]
G. Westheimer. Directional sensitivity of the retina: 75 years of stiles-crawford effect. Proceedings of the Royal Society B: Biological Sciences, 275(1653):2777--2786, 2008.
[61]
G. Wetzstein and D. Lanman. Factored displays: improving resolution, dynamic range, color reproduction, and light field characteristics with advanced signal processing. IEEE Signal Processing Magazine, 33(5):119--129, 2016.
[62]
D. Yang, W. Seo, H. Yu, S. I. Kim, B. Shin, C.-K. Lee, S. Moon, J. An, J.-Y. Hong, G. Sung, et al. Diffraction-engineered holography: Beyond the depth representation limit of holographic displays. Nature Communications, 13(1):6012, 2022.
[63]
D. Yoo, Y. Jo, S.-W. Nam, C. Chen, and B. Lee. Optimization of computer-generated holograms featuring phase randomness control. Optics Letters, 46(19):4769--4772, 2021.
[64]
H. Zhang, Y. Zhao, L. Cao, and G. Jin. Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues. Optics express, 23(4):3901--3913, 2015.
[65]
H. Zhang, L. Cao, and G. Jin. Computer-generated hologram with occlusion effect using layer-based processing. Applied optics, 56(13), 2017.
[66]
Z. Zhang and M. Levoy. Wigner distributions and how they relate to the light field. In 2009 IEEE International Conference on Computational Photography (ICCP), pages 1--10. IEEE, 2009.
[67]
F. Zhong, A. Jindal, Ö. Yöntem, P. Hanji, S. Watt, and R. Mantiuk. Reproducing reality with a high-dynamic-range multi-focal stereo display. ACM Transactions on Graphics, 40(6):241, 2021.

Cited By

View all
  • (2024)Interactive Multi-GPU Light Field Path Tracing Using Multi-Source Spatial ReprojectionProceedings of the 30th ACM Symposium on Virtual Reality Software and Technology10.1145/3641825.3687710(1-11)Online publication date: 9-Oct-2024
  • (2024)Holographic ParallaxACM SIGGRAPH 2024 Emerging Technologies10.1145/3641517.3664386(1-2)Online publication date: 13-Jul-2024

Index Terms

  1. Holographic Parallax Improves 3D Perceptual Realism

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 43, Issue 4
    July 2024
    1774 pages
    EISSN:1557-7368
    DOI:10.1145/3675116
    Issue’s Table of Contents
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 19 July 2024
    Published in TOG Volume 43, Issue 4

    Check for updates

    Author Tags

    1. virtual reality
    2. augmented reality
    3. computational displays
    4. holography
    5. perception

    Qualifiers

    • Research-article

    Funding Sources

    • Institute of Information & communications Technology Planning & Evaluation (IITP) / Korea government

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)506
    • Downloads (Last 6 weeks)152
    Reflects downloads up to 12 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Interactive Multi-GPU Light Field Path Tracing Using Multi-Source Spatial ReprojectionProceedings of the 30th ACM Symposium on Virtual Reality Software and Technology10.1145/3641825.3687710(1-11)Online publication date: 9-Oct-2024
    • (2024)Holographic ParallaxACM SIGGRAPH 2024 Emerging Technologies10.1145/3641517.3664386(1-2)Online publication date: 13-Jul-2024

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media