Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3660515.3662836acmconferencesArticle/Chapter ViewAbstractPublication PageseicsConference Proceedingsconference-collections
abstract

Beyond Radar Waves: The First Workshop on Radar-Based Human-Computer Interaction

Published: 24 June 2024 Publication History

Abstract

This workshop targets topics in the emerging area of radar-based interaction while focusing on scientific explorations centred on Engineering Interactive Computer Systems as part of Human-Computer Interaction. Radar technology, traditionally employed for surveillance and object detection applications, has been recently adopted by Human-Computer Interaction researchers and practitioners for creating novel user experiences in relation to computer systems, including gesture-based interaction, material recognition, and enabling interactions performed through fabrics, surfaces, and objects. In this context, the participants in this workshop will explore fundamental, practical, and experimental challenges posed by radar-based human-computer interaction in various application domains, such as gaming, virtual and augmented reality, healthcare, emergency response systems, and smart environments.

References

[1]
G. Agresti and S. Milani. 2019. Material Identification Using RF Sensors and Convolutional Neural Networks. In Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP ’19). 3662–3666. https://doi.org/10.1109/ICASSP.2019.8682296
[2]
Shahzad Ahmed, Karam Dad Kallu, Sarfaraz Ahmed, and Sung Ho Cho. 2021. Hand Gestures Recognition Using Radar Sensors for Human-Computer-Interaction: A Review. Remote Sensing 13, 3 (2021). https://doi.org/10.3390/rs13030527
[3]
Shahzad Ahmed, Dingyang Wang, Junyoung Park, and Sung Ho Cho. 2021. UWB-gestures, a public dataset of dynamic hand gestures acquired using impulse radar sensors. Scientific Data 8, 102 (April 2021). https://doi.org/10.1038/s41597-021-00876-0
[4]
Anum Ali, Priyabrata Parida, Vutha Va, Saifeng Ni, Khuong Nhat Nguyen, Boon Loong Ng, and Jianzhong Charlie Zhang. 2022. End-to-End Dynamic Gesture Recognition Using MmWave Radar. IEEE Access 10 (2022), 88692–88706. https://doi.org/10.1109/ACCESS.2022.3199411
[5]
Mohammed Alloulah, Anton Isopoussu, and Fahim Kawsar. 2018. On Indoor Human Sensing Using Commodity Radar. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers (Singapore, Singapore) (UbiComp ’18). ACM, New York, NY, USA, 1331–1336. https://doi.org/10.1145/3267305.3274180
[6]
Nuwan T. Attygalle, Luis A. Leiva, Matjaz Kljun, Christian Sandor, Alexander Plopski, Hirokazu Kato, and Klen Copic Pucihar. 2021. No Interface, No Problem: Gesture Recognition on Physical Objects Using Radar Sensing. Sensors 21, 17 (2021), 5771. https://doi.org/10.3390/s21175771
[7]
Nuwan T. Attygalle, Matjaz Una Vuletic, Kljun, and Klen Čopič Pucihar. 2024. Towards Hand Gesture Recognition Prototype Using the IWR6843ISK Radar Sensor and Leap Motion. Proc. of the 8th Human-Computer Interaction Slovenia conference 2023 (jan 2024), 10 pages.
[8]
Daniel Avrahami, Mitesh Patel, Yusuke Yamaura, and Sven Kratz. 2018. Below the Surface: Unobtrusive Activity Recognition for Work Surfaces Using RF-Radar Sensing. In Proceedings of the 23rd International Conference on Intelligent User Interfaces (Tokyo, Japan) (IUI ’18). ACM, New York, NY, USA, 439–451. https://doi.org/10.1145/3172944.3172962
[9]
Daniel Avrahami, Mitesh Patel, Yusuke Yamaura, Sven Kratz, and Matthew Cooper. 2019. Unobtrusive Activity Recognition and Position Estimation for Work Surfaces Using RF-Radar Sensing. ACM Trans. Interact. Intell. Syst. 10, 1, Article 11 (Aug. 2019), 28 pages. https://doi.org/10.1145/3241383
[10]
A. D. Berenguer, M. C. Oveneke, H. Khalid, M. Alioscha-Perez, A. Bourdoux, and H. Sahli. 2019. GestureVLAD: Combining Unsupervised Features Representation and Spatio-Temporal Aggregation for Doppler-Radar Gesture Recognition. IEEE Access 7 (2019), 137122–137135. https://doi.org/10.1109/ACCESS.2019.2942305
[11]
F. M. Caputo, S. Burato, G. Pavan, T. Voillemin, H. Wannous, J. P. Vandeborre, M. Maghoumi, E. M. Taranta II, A. Razmjoo, J. J. LaViola Jr., F. Manganaro, S. Pini, G. Borghi, R. Vezzani, R. Cucchiara, H. Nguyen, M. T. Tran, and A. Giachetti. 2019. Online Gesture Recognition. In Eurographics Workshop on 3D Object Retrieval, Silvia Biasotti, Guillaume Lavoué, and Remco Veltkamp (Eds.). The Eurographics Association, 93–102. https://doi.org/10.2312/3dor.20191067
[12]
Stefano Chioccarello, Arthur Sluÿters, Alberto Testolin, Jean Vanderdonckt, and Sébastien Lambot. 2023. FORTE: Few Samples for Recognizing Hand Gestures with a Smartphone-attached Radar. Proc. ACM Hum. Comput. Interact. 7, EICS (2023), 1–25. https://doi.org/10.1145/3593231
[13]
Jae-Woo Choi, Si-Jung Ryu, and Jong-Hwan Kim. 2019. Short-Range Radar Based Real-Time Hand Gesture Recognition Using LSTM Encoder. IEEE Access 7 (2019), 33610–33618. https://doi.org/10.1109/ACCESS.2019.2903586
[14]
Alberic De Coster and Sébastien Lambot. 2019. Full-Wave Removal of Internal Antenna Effects and Antenna-Medium Interactions for Improved Ground-Penetrating Radar Imaging. IEEE Trans. Geosci. Remote. Sens. 57, 1 (2019), 93–103. https://doi.org/10.1109/TGRS.2018.2852486
[15]
Yaoyao Dong and Wei Qu. 2021. Review of Research on Gesture Recognition Based on Radar Technology. In Artificial Intelligence for Communications and Networks, Shuo Shi, Liang Ye, and Yu Zhang (Eds.). Springer International Publishing, Cham, 390–403. https://doi.org/10.1007/978-3-030-69066-3_34
[16]
Zak Flintoff, Bruno Johnston, and Minas Liarokapis. 2018. Single-Grasp, Model-Free Object Classification using a Hyper-Adaptive Hand, Google Soli, and Tactile Sensors. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 1943–1950. https://doi.org/10.1109/IROS.2018.8594166
[17]
Tamil Selvan Gunasekaran, Ryo Hajika, Yun Suen Pai, Eiji Hayashi, and Mark Billinghurst. 2022. RaITIn: Radar-Based Identification for Tangible Interactions. In Extended Abstracts of the ACM Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI EA ’22). ACM, New York, NY, USA, Article 445, 7 pages. https://doi.org/10.1145/3491101.3519808
[18]
Ryo Hajika, Tamil Selvan Gunasekaran, Chloe Dolma Si Ying Haigh, Yun Suen Pai, Eiji Hayashi, Jaime Lien, Danielle Lottridge, and Mark Billinghurst. 2024. RadarHand: A Wrist-Worn Radar for On-Skin Touch-Based Proprioceptive Gestures. ACM Trans. Comput.-Hum. Interact. 31, 2, Article 17 (jan 2024), 36 pages. https://doi.org/10.1145/3617365
[19]
Eiji Hayashi, Jaime Lien, Nicholas Gillian, Leonardo Giusti, Dave Weber, Jin Yamanaka, Lauren Bedal, and Ivan Poupyrev. 2021. RadarNet: Efficient Gesture Recognition Technique Utilizing a Miniature Radar Sensor. In Proceedings of the ACM Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). ACM, New York, NY, USA, Article 5, 14 pages. https://doi.org/10.1145/3411764.3445367
[20]
Souvik Hazra and Avik Santra. 2018. Robust Gesture Recognition Using Millimetric-Wave Radar System. IEEE Sensors Letters 2, 4 (2018), 1–4. https://doi.org/10.1109/LSENS.2018.2882642
[21]
S. Hazra and A. Santra. 2019. Short-Range Radar-Based Gesture Recognition System Using 3D CNN With Triplet Loss. IEEE Access 7 (2019), 125623–125633. https://doi.org/10.1109/ACCESS.2019.2938725
[22]
Yaofu Huang, Zengshan Tian, and Qing Jiang. 2021. A Radar and Monocular Camera-Based Fusion Approach for Pedestrian Detection. In Proceedings of the 2nd International Conference on Computing and Data Science. ACM, New York, NY, USA, Article 9, 7 pages. https://doi.org/10.1145/3448734.3450461
[23]
François Jonard, Frédéric André, Nicolas Pinel, Craig Warren, Harry Vereecken, and Sébastien Lambot. 2019. Modeling of Multilayered Media Green’s Functions With Rough Interfaces. IEEE Trans. Geosci. Remote. Sens. 57, 10 (2019), 7671–7681. https://doi.org/10.1109/TGRS.2019.2915676
[24]
Rami N. Khushaba and Andrew J. Hill. 2022. Radar-Based Materials Classification Using Deep Wavelet Scattering Transform: A Comparison of Centimeter vs. Millimeter Wave Units. IEEE Robotics and Automation Letters 7, 2 (2022), 2016–2022. https://doi.org/10.1109/LRA.2022.3143200
[25]
Sébastien Lambot and Frédéric André. 2014. Full-Wave Modeling of Near-Field Radar Data for Planar Layered Media Reconstruction. IEEE Transactions on Geoscience and Remote Sensing 52, 5 (2014), 2295–2303. https://doi.org/10.1109/TGRS.2013.2259243
[26]
Luis A. Leiva, Matjaz Kljun, Christian Sandor, and Klen Copic Pucihar. 2021. The Wearable Radar: Sensing Gestures Through Fabrics. In Proceedings of the 22nd International Conference on Human-Computer Interaction with Mobile Devices and Services (Oldenburg, Germany) (MobileHCI ’20). ACM, New York, NY, USA, Article 17, 4 pages. https://doi.org/10.1145/3406324.3410720
[27]
Feifei Li, Yujun Li, Baozhen Du, Hongji Xu, Hailiang Xiong, and Min Chen. 2019. A Gesture Interaction System Based on Improved Finger Feature and WE-KNN. In Proceedings of the 4th ACM International Conference on Mathematics and Artificial Intelligence (Chegndu, China) (ICMAI 2019). ACM, New York, NY, USA, 39–43. https://doi.org/10.1145/3325730.3325759
[28]
Jaime Lien, Nicholas Gillian, M. Emre Karagozler, Patrick Amihood, Carsten Schwesig, Erik Olson, Hakim Raja, and Ivan Poupyrev. 2016. Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar. ACM Trans. Graph. 35, 4, Article 142 (July 2016), 19 pages. https://doi.org/10.1145/2897824.2925953
[29]
Haipeng Liu, Yuheng Wang, Anfu Zhou, Hanyue He, Wei Wang, Kunpeng Wang, Peilin Pan, Yixuan Lu, Liang Liu, and Huadong Ma. 2020. Real-Time Arm Gesture Recognition in Smart Home Scenarios via Millimeter Wave Sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 4 (2020), 1–28. https://doi.org/10.1145/3432235
[30]
Xinye Lou, Zhiwen Yu, Zhu Wang, Kaijie Zhang, and Bin Guo. 2018. Gesture-Radar: Enabling Natural Human-Computer Interactions with Radar-Based Adaptive and Robust Arm Gesture Recognition. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (Miyazaki, Japan). IEEE Press, 4291–4297. https://doi.org/10.1109/SMC.2018.00726
[31]
Nathan Magrofuoco, Jorge Luis Pérez-Medina, Paolo Roselli, Jean Vanderdonckt, and Santiago Villarreal. 2019. Eliciting Contact-Based and Contactless Gestures With Radar-Based Sensors. IEEE Access 7 (2019), 176982–176997. https://doi.org/10.1109/ACCESS.2019.2951349
[32]
Qurban Memon, Bethel Wodajo, Selam Tekleab, and Eman Alshehi. 2023. Detection of Static and Moving Objects behind Walls and Surfaces – An Experimental Investigation. In Proceedings of the 2023 9th International Conference on Computing and Artificial Intelligence (Tianjin, China) (ICCAI ’23). ACM, New York, NY, USA, 8–12. https://doi.org/10.1145/3594315.3594317
[33]
Marco Mercuri, Peter Karsmakers, Bart Vanrumste, Paul Leroux, and Dominique Schreurs. 2016. Biomedical wireless radar sensor network for indoor emergency situations detection and vital signs monitoring. In Proceedings of IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS). 32–35. https://doi.org/10.1109/BIOWIRELESS.2016.7445554
[34]
Alexandros Ninos, Jürgen Hasch, and Thomas Zwick. 2022. Multi-User Macro Gesture Recognition using mmWave Technology. In 2021 18th European Radar Conference (EuRAD). 37–40. https://doi.org/10.23919/EuRAD50154.2022.9784494
[35]
Institute of Electrical and Electronics Engineers. 2020. IEEE Standard Letter Designations for Radar-Frequency Bands. IEEE Std 521-2019 (Revision of IEEE Std 521-2002) (2020), 1–15. https://doi.org/10.1109/IEEESTD.2020.8999849
[36]
Sameera Palipana, Dariush Salami, Luis A. Leiva, and Stephan Sigg. 2021. Pantomime: Mid-Air Gesture Recognition with Sparse Millimeter-Wave Radar Point Clouds. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5, 1 (March 2021), 27:1–27:27. https://doi.org/10.1145/3448110
[37]
Joseph Paradiso, Craig Abler, Kai-yuh Hsiao, and Matthew Reynolds. 1997. The Magic Carpet: Physical Sensing for Immersive Environments. In CHI ’97 Extended Abstracts on Human Factors in Computing Systems (Atlanta, Georgia) (CHI EA ’97). ACM, New York, NY, USA, 277–278. https://doi.org/10.1145/1120212.1120391
[38]
Zeeshan Qamar, Nafati Aboserwal, and Jorge L Salazar-Cerreno. 2020. An accurate method for designing, characterizing, and testing a multi-layer radome for mm-wave applications. IEEE Access 8 (2020), 23041–23053.
[39]
Yuwei Ren, Jiuyuan Lu, Andrian Beletchi, Yin Huang, Ilia Karmanov, Daniel Fontijne, Chirag Patel, and Hao Xu. 2021. Hand gesture recognition using 802.11ad mmWave sensor in the mobile device. In 2021 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). 1–6. https://doi.org/10.1109/WCNCW49093.2021.9419978
[40]
Takuya Sakamoto, Xiaomeng Gao, Ehsan Yavari, Ashikur Rahman, Olga Boric-Lubecke, and Victor M Lubecke. 2018. Hand gesture recognition using a radar echo I–Q plot and a convolutional neural network. IEEE Sensors Letters 2, 3 (2018), 1–4. https://doi.org/10.1109/LSENS.2018.2866371
[41]
Luís Santana, Ana Patrícia Rocha, Afonso Guimarães, Ilídio C. Oliveira, José Maria Fernandes, Samuel Silva, and António Teixeira. 2022. Radar-Based Gesture Recognition Towards Supporting Communication in Aphasia: The Bedroom Scenario. In Mobile and Ubiquitous Systems: Computing, Networking and Services, Takahiro Hara and Hirozumi Yamaguchi (Eds.). Springer International Publishing, Cham, 500–506. https://doi.org/10.1007/978-3-030-94822-1_30
[42]
Jacqueline M Schellberg and Sanjib Sur. 2021. ViSAR: A Mobile Platform for Vision-Integrated Millimeter-Wave Synthetic Aperture Radar. In Adjunct Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing and the ACM International Symposium on Wearable Computers (Virtual, USA) (UbiComp ’21). ACM, New York, NY, USA, 69–71. https://doi.org/10.1145/3460418.3479310
[43]
Ovidiu-Andrei Schipor, Radu-Daniel Vatavu, and Jean Vanderdonckt. 2019. Euphoria: A Scalable, Event-Driven Architecture for Designing Interactions Across Heterogeneous Devices in Smart Environments. Information and Software Technology 109 (2019), 43–59. https://doi.org/10.1016/j.infsof.2019.01.006
[44]
Alexandru-Ionut Siean, Cristian Pamparau, Arthur Sluÿters, Radu-Daniel Vatavu, and Jean Vanderdonckt. 2023. Flexible gesture input with radars: systematic literature review and taxonomy of radar sensing integration in ambient intelligence environments. J. Ambient Intell. Humaniz. Comput. 14, 6 (2023), 7967–7981. https://doi.org/10.1007/s12652-023-04606-9
[45]
Alexandru-Ionut Siean, Cristian Pamparău, and Radu-Daniel Vatavu. 2022. Scenario-Based Exploration of Integrating Radar Sensing into Everyday Objects for Free-Hand Television Control. In Proceedings of the ACM International Conference on Interactive Media Experiences (Aveiro, JB, Portugal) (IMX ’22). ACM, New York, NY, USA, 357–362. https://doi.org/10.1145/3505284.3532982
[46]
E. Slob, M. Sato, and G. Olhoeft. 2010. Surface and borehole ground-penetrating-radar developments. Geophysics 75, 5 (2010), X75A103–75A120. https://doi.org/10.1190/1.3480619
[47]
Arthur Sluÿters, Sébastien Lambot, and Jean Vanderdonckt. 2022. Hand Gesture Recognition for an Off-the-Shelf Radar by Electromagnetic Modeling and Inversion. In 27th International Conference on Intelligent User Interfaces (Helsinki, Finland) (IUI ’22). ACM, New York, NY, USA, 506–522. https://doi.org/10.1145/3490099.3511107
[48]
Arthur Sluÿters, Sébastien Lambot, Jean Vanderdonckt, and Radu-Daniel Vatavu. 2023. RadarSense: Accurate Recognition of Mid-Air Hand Gestures with Radar Sensing and Few Training Examples. ACM Trans. Interact. Intell. Syst. (mar 2023). https://doi.org/10.1145/3589645 Just Accepted.
[49]
Arthur Sluÿters, Sébastien Lambot, Jean Vanderdonckt, and Santiago Villarreal-Narvaez. 2024. Analysis of User-defined Radar-based Hand Gestures Sensed through Multiple Materials. IEEE Access 12 (2024), 1–24. https://doi.org/10.1109/ACCESS.2024.3366667
[50]
Arthur Sluÿters, Quentin Sellier, Jean Vanderdonckt, Vik Parthiban, and Pattie Maes. 2023. Consistent, Continuous, and Customizable Mid-Air Gesture Interaction for Browsing Multimedia Objects on Large Displays. International Journal of Human–Computer Interaction 39, 12 (2023), 2492–2523. https://doi.org/10.1080/10447318.2022.2078464 arXiv:https://doi.org/10.1080/10447318.2022.2078464
[51]
Francesco Soldovieri, Olga Lopera, and Sébastien Lambot. 2011. Combination of Advanced Inversion Techniques for an Accurate Target Localization via GPR for Demining Applications. IEEE Trans. Geosci. Remote. Sens. 49, 1-2 (2011), 451–461. https://doi.org/10.1109/TGRS.2010.2051675
[52]
Md. Zia Uddin, Farzan Majeed Noori, and Jim Torresen. 2020. In-Home Emergency Detection Using an Ambient Ultra-Wideband Radar Sensor and Deep Learning. In 2020 IEEE Ukrainian Microwave Week (UkrMW). 1089–1093. https://doi.org/10.1109/UkrMW49653.2020.9252708
[53]
Klen Čopič Pucihar, Nuwan T. Attygalle, Matjaz Kljun, Christian Sandor, and Luis A. Leiva. 2022. Solids on Soli: Millimetre-Wave Radar Sensing through Materials. Proc. ACM Hum.-Comput. Interact. 6, EICS, Article 156 (jun 2022), 19 pages. https://doi.org/10.1145/3532212
[54]
Klen Čopič Pucihar, Christian Sandor, Matjaž Kljun, Wolfgang Huerst, Alexander Plopski, Takafumi Taketomi, Hirokazu Kato, and Luis A. Leiva. 2019. The Missing Interface: Micro-Gestures on Augmented Objects. In Extended Abstracts of the ACM CHI Conference on Human Factors in Computing Systems(CHI EA ’19). ACM, New York, NY, USA, 1–6. https://doi.org/10.1145/3290607.3312986
[55]
Santiago Villarreal-Narvaez, Alexandru-Ionuţ Şiean, Arthur Sluÿters, Radu-Daniel Vatavu, and Jean Vanderdonckt. 2022. Informing Future Gesture Elicitation Studies for Interactive Applications that Use Radar Sensing. In Proceedings of the 2022 International Conference on Advanced Visual Interfaces (Frascati, Rome, Italy) (AVI 2022). ACM, New York, NY, USA, Article 50, 3 pages. https://doi.org/10.1145/3531073.3534475
[56]
Santiago Villarreal-Narvaez, Arthur Sluÿters, Jean Vanderdonckt, and Radu-Daniel Vatavu. 2024. Brave New GES World: A Systematic Literature Review of Gestures and Referents in Gesture Elicitation Studies. ACM Comput. Surv. 56, 5, Article 128 (jan 2024), 55 pages. https://doi.org/10.1145/3636458
[57]
Shelly Vishwakarma, Vahini Ummalaneni, Muhammad Shoaib Iqbal, Angshul Majumdar, and Shobha Sundar Ram. 2018. Mitigation of through-wall interference in radar images using denoising autoencoders. In 2018 IEEE Radar Conference (RadarConf18). 1543–1548. https://doi.org/10.1109/RADAR.2018.8378796
[58]
Qian Wan, Yiran Li, Changzhi Li, and Ranadip Pal. 2014. Gesture recognition for smart home applications using portable radar sensors. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 6414–6417. https://doi.org/10.1109/EMBC.2014.6945096
[59]
P. Wang, J. Lin, F. Wang, J. Xiu, Y. Lin, N. Yan, and H. Xu. 2020. A Gesture Air-Writing Tracking Method that Uses 24 GHz SIMO Radar SoC. IEEE Access 8 (2020), 152728–152741. https://doi.org/10.1109/ACCESS.2020.3017869
[60]
Ruoyu Wang, Siyuan Xiang, Chen Feng, Pu Wang, Semiha Ergan, and Yi Fang. 2019. Through-Wall Object Recognition and Pose Estimation. In Proceedings of the 36th International Symposium on Automation and Robotics in Construction (Banff) (ISARC ’19), Mohamed Al-Hussein (Ed.). International Association for Automation and Robotics in Construction (IAARC), Banff, Canada, 1176–1183. https://doi.org/10.22260/ISARC2019/0157
[61]
Saiwen Wang, Jie Song, Jaime Lien, Ivan Poupyrev, and Otmar Hilliges. 2016. Interacting with Soli: Exploring Fine-Grained Dynamic Gesture Recognition in the Radio-Frequency Spectrum. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). ACM, New York, NY, USA, 851–860. https://doi.org/10.1145/2984511.2984565
[62]
Zhengjie Wang, Fei Liu, Xue Li, Mingjing Ma, Xiaoxue Feng, and Yinjing Guo. 2023. A Survey of Hand Gesture Recognition Based on FMCW Radar. In Proceedings of the 8th International Conference on Communication and Information Processing (Beijing, China) (ICCIP ’22). ACM, New York, NY, USA, 73–79. https://doi.org/10.1145/3571662.3571674
[63]
Jacob O. Wobbrock, Meredith Ringel Morris, and Andrew D. Wilson. 2009. User-defined gestures for surface computing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’09). ACM, New York, NY, USA, 1083–1092. https://doi.org/10.1145/1518701.1518866
[64]
Christian Wolff. 2022. Waves and Frequency Ranges. https://www.radartutorial.eu/07.waves/Waves and Frequency Ranges.en.html
[65]
Hui-Shyong Yeo, Gergely Flamich, Patrick Schrempf, David Harris-Birtill, and Aaron Quigley. 2016. RadarCat: Radar Categorization for Input & Interaction. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). ACM, New York, NY, USA, 833–841. https://doi.org/10.1145/2984511.2984515
[66]
Hui-Shyong Yeo, Ryosuke Minami, Kirill Rodriguez, George Shaker, and Aaron Quigley. 2018. Exploring Tangible Interactions with Radar Sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 4, Article 200 (Dec. 2018), 25 pages. https://doi.org/10.1145/3287078
[67]
Hui-Shyong Yeo and Aaron Quigley. 2017. Radar Sensing in Human-Computer Interaction. Interactions 25, 1 (Dec. 2017), 70–73. https://doi.org/10.1145/3159651
[68]
Myoungseok Yu, Narae Kim, Yunho Jung, and Seongjoo Lee. 2020. A Frame Detection Method for Real-Time Hand Gesture Recognition Systems Using CW-Radar. Sensors 20, 8 (2020). https://doi.org/10.3390/s20082321
[69]
Bo Zhang, Lei Zhang, Mojun Wu, and Yan Wang. 2021. Using Auto-Encoder Neural Networks for Memory Fault Tolerance in Gesture Recognition System. In 2021 6th International Conference on Mathematics and Artificial Intelligence (Chengdu, China) (ICMAI 2021). ACM, New York, NY, USA, 25–33. https://doi.org/10.1145/3460569.3460571
[70]
Tianyue Zheng, Zhe Chen, Jun Luo, Lin Ke, Chaoyang Zhao, and Yaowen Yang. 2021. SiWa: See into Walls via Deep UWB Radar. In Proceedings of the 27th Annual International Conference on Mobile Computing and Networking (New Orleans, Louisiana) (MobiCom ’21). ACM, New York, NY, USA, 323–336. https://doi.org/10.1145/3447993.3483258
[71]
Shangyue Zhu, Junhong Xu, Hanqing Guo, Qiwei Liu, Shaoen Wu, and Honggang Wang. 2018. Indoor Human Activity Recognition Based on Ambient Radar with Signal Processing and Machine Learning. In Proceedings of IEEE Int. Conference on Communications(ICC ’18). 1–6. https://doi.org/10.1109/ICC.2018.8422107
[72]
Luka Zmrzlak, Aljaž Blatnik, Mirco Scaffardi, Antonella Bogoni, and Boštjan Batagelj. 2023. Transmitter and Receiver Amplifier Chains in X- and Ku-bands of Radio Frequency Front-End for Frequency-Agile Microwave Photonic Radars. In 2023 30th International Conference on Systems, Signals and Image Processing (IWSSIP). 1–5. https://doi.org/10.1109/IWSSIP58668.2023.10180307

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
EICS '24 Companion: Companion Proceedings of the 16th ACM SIGCHI Symposium on Engineering Interactive Computing Systems
June 2024
129 pages
ISBN:9798400706516
DOI:10.1145/3660515
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 June 2024

Check for updates

Author Tags

  1. Radar-based sensing
  2. body gesture recognition
  3. engineering radar-based user interfaces
  4. radar datasets
  5. radar-based interaction
  6. sensing gestures through materials

Qualifiers

  • Abstract
  • Research
  • Refereed limited

Funding Sources

Conference

EICS '24
Sponsor:

Acceptance Rates

Overall Acceptance Rate 73 of 299 submissions, 24%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 71
    Total Downloads
  • Downloads (Last 12 months)71
  • Downloads (Last 6 weeks)11
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media