Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3664476.3670445acmotherconferencesArticle/Chapter ViewAbstractPublication PagesaresConference Proceedingsconference-collections
research-article

Comparing Hyperbolic Graph Embedding models on Anomaly Detection for Cybersecurity

Published: 30 July 2024 Publication History

Abstract

Graph-based anomaly detection has emerged as a powerful tool in cybersecurity for identifying malicious activities within computer systems and networks. While existing approaches often rely on embedding graphs in Euclidean space, recent studies have suggested that hyperbolic space provides a more suitable geometry for capturing the inherent hierarchical and complex relationships present in graph data. In this paper, we explore the efficacy of hyperbolic graph embedding for anomaly detection in the context of cybersecurity. We conduct a comparison of six state-of-the-art hyperbolic graph embedding methods, evaluating their performance on a well-known intrusion detection dataset. Our analysis reveals the strengths and limitations of each method, demonstrating the potential of hyperbolic graph embedding for enhancing security.

References

[1]
Ittai Abraham, Mahesh Balakrishnan, Fabian Kuhn, Dahlia Malkhi, Venugopalan Ramasubramanian, and Kunal Talwar. 2007. Reconstructing approximate tree metrics. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing (Portland, Oregon, USA) (PODC ’07). Association for Computing Machinery, New York, NY, USA, 43–52. https://doi.org/10.1145/1281100.1281110
[2]
Aaron B. Adcock, Blair D. Sullivan, and Michael W. Mahoney. 2013. Tree-Like Structure in Large Social and Information Networks. In 2013 IEEE 13th International Conference on Data Mining. 1–10. https://doi.org/10.1109/ICDM.2013.77
[3]
Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexander J. Smola. 2013. Distributed large-scale natural graph factorization. In Proceedings of the 22nd International Conference on World Wide Web (Rio de Janeiro, Brazil) (WWW ’13). Association for Computing Machinery, New York, NY, USA, 37–48. https://doi.org/10.1145/2488388.2488393
[4]
Gregorio Alanis-Lobato, Pablo Mier, and Miguel A Andrade-Navarro. 2016. Efficient embedding of complex networks to hyperbolic space via their Laplacian. Scientific reports 6, 1 (2016), 30108. https://doi.org/10.1038/srep30108
[5]
Gregorio Alanis-Lobato, Pablo Mier, and Miguel A Andrade-Navarro. 2016. Manifold learning and maximum likelihood estimation for hyperbolic network embedding. Applied network science 1 (2016), 1–14.
[6]
Arwa Aldweesh, Abdelouahid Derhab, and Ahmed Z. Emam. 2020. Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues. Knowledge-Based Systems 189 (2020), 105124. https://doi.org/10.1016/j.knosys.2019.105124
[7]
R.R.R. Barbosa, R. Sadre, Aiko Pras, and R. van de Meent. 2010. Simpleweb/University of Twente Traffic Traces Data Repository. Number TR-CTIT-10-19 in CTIT Technical Report Series. Centre for Telematics and Information Technology (CTIT), Netherlands.
[8]
Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. 2018. Efficient Embedding of Scale-Free Graphs in the Hyperbolic Plane. IEEE/ACM Transactions on Networking 26, 2 (2018), 920–933. https://doi.org/10.1109/TNET.2018.2810186
[9]
Marián Boguná, Fragkiskos Papadopoulos, and Dmitri Krioukov. 2010. Sustaining the internet with hyperbolic mapping. Nature communications 1, 1 (2010), 62.
[10]
Silvère Bonnabel. 2013. Stochastic Gradient Descent on Riemannian Manifolds. IEEE Trans. Automat. Control 58, 9 (2013), 2217–2229. https://doi.org/10.1109/TAC.2013.2254619
[11]
Joey Bose, Ariella Smofsky, Renjie Liao, Prakash Panangaden, and Will Hamilton. 2020. Latent Variable Modelling with Hyperbolic Normalizing Flows. In Proceedings of the 37th International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol. 119), Hal Daumé III and Aarti Singh (Eds.). PMLR, 1045–1055. https://proceedings.mlr.press/v119/bose20a.html
[12]
Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. 2017. Geometric Deep Learning: Going beyond Euclidean data. IEEE Signal Processing Magazine 34, 4 (2017), 18–42. https://doi.org/10.1109/MSP.2017.2693418
[13]
HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang. 2018. A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications. IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1616–1637. https://doi.org/10.1109/TKDE.2018.2807452
[14]
James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, 1997. Hyperbolic geometry. Flavors of geometry 31, 59-115 (1997), 2.
[15]
Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning Graph Representations with Global Structural Information. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (Melbourne, Australia) (CIKM ’15). Association for Computing Machinery, New York, NY, USA, 891–900. https://doi.org/10.1145/2806416.2806512
[16]
Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. 2017. Neural embeddings of graphs in hyperbolic space. arXiv preprint arXiv:1705.10359 (2017). https://doi.org/10.48550/arXiv.1705.10359
[17]
Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. 2019. Hyperbolic Graph Convolutional Neural Networks. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Vol. 32. Curran Associates, Inc.https://proceedings.neurips.cc/paper_files/paper/2019/file/0415740eaa4d9decbc8da001d3fd805f-Paper.pdf
[18]
Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM Comput. Surv. 41, 3, Article 15 (jul 2009), 58 pages. https://doi.org/10.1145/1541880.1541882
[19]
A. Cvetkovski and M. Crovella. 2009. Hyperbolic Embedding and Routing for Dynamic Graphs. In IEEE INFOCOM 2009. 1647–1655. https://doi.org/10.1109/INFCOM.2009.5062083
[20]
Andrej Cvetkovski and Mark Crovella. 2011. Multidimensional scaling in the Poincaré disk. arXiv preprint arXiv:1105.5332 (2011). https://doi.org/10.48550/arXiv.1105.5332
[21]
J. Dai, Y. Wu, Z. Gao, and Y. Jia. 2021. A Hyperbolic-to-Hyperbolic Graph Convolutional Network. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA, 154–163. https://doi.org/10.1109/CVPR46437.2021.00022
[22]
David Eppstein and Michael T. Goodrich. 2011. Succinct Greedy Geometric Routing Using Hyperbolic Geometry. IEEE Trans. Comput. 60, 11 (2011), 1571–1580. https://doi.org/10.1109/TC.2010.257
[23]
Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda. 2010. MAWILab: combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking. In Proceedings of the 6th International COnference (Philadelphia, Pennsylvania) (Co-NEXT ’10). Association for Computing Machinery, New York, NY, USA, Article 8, 12 pages. https://doi.org/10.1145/1921168.1921179
[24]
Octavian Ganea, Gary Becigneul, and Thomas Hofmann. 2018. Hyperbolic Entailment Cones for Learning Hierarchical Embeddings. In Proceedings of the 35th International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 1646–1655. https://proceedings.mlr.press/v80/ganea18a.html
[25]
Octavian Ganea, Gary Becigneul, and Thomas Hofmann. 2018. Hyperbolic Neural Networks. In Advances in Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Vol. 31. Curran Associates, Inc.https://proceedings.neurips.cc/paper_files/paper/2018/file/dbab2adc8f9d078009ee3fa810bea142-Paper.pdf
[26]
Guillermo García-Pérez, Antoine Allard, M Ángeles Serrano, and Marián Boguñá. 2019. Mercator: uncovering faithful hyperbolic embeddings of complex networks. New Journal of Physics 21, 12 (2019), 123033. https://doi.org/10.1007/s41109-016-0013-0
[27]
M. Gromov. 1987. Hyperbolic Groups. Springer New York, New York, NY, 75–263. https://doi.org/10.1007/978-1-4613-9586-7_3
[28]
Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD ’16). Association for Computing Machinery, New York, NY, USA, 855–864. https://doi.org/10.1145/2939672.2939754
[29]
Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, 2018. Hyperbolic attention networks. arXiv preprint arXiv:1805.09786 (2018). https://doi.org/10.48550/arXiv.1805.09786
[30]
Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation Learning on Large Graphs. In Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Vol. 30. Curran Associates, Inc.https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
[31]
Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013). https://doi.org/10.48550/arXiv.1312.6114
[32]
Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016). https://doi.org/10.48550/arXiv.1609.02907
[33]
Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016). https://doi.org/10.48550/arXiv.1611.07308
[34]
R. Kleinberg. 2007. Geographic Routing Using Hyperbolic Space. In IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications. 1902–1909. https://doi.org/10.1109/INFCOM.2007.221
[35]
Nickolaos Koroniotis, Nour Moustafa, Elena Sitnikova, and Benjamin Turnbull. 2019. Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Generation Computer Systems 100 (2019), 779–796. https://doi.org/10.1016/j.future.2019.05.041
[36]
Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguñá. 2010. Hyperbolic geometry of complex networks. Phys. Rev. E 82 (Sep 2010), 036106. Issue 3. https://doi.org/10.1103/PhysRevE.82.036106
[37]
Marc Law, Renjie Liao, Jake Snell, and Richard Zemel. 2019. Lorentzian Distance Learning for Hyperbolic Representations. In Proceedings of the 36th International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 3672–3681. https://proceedings.mlr.press/v97/law19a.html
[38]
Nathan Linial, Eran London, and Yuri Rabinovich. 1995. The geometry of graphs and some of its algorithmic applications. Combinatorica 15 (1995), 215–245. https://doi.org/10.1007/BF01200757
[39]
Qi Liu, Maximilian Nickel, and Douwe Kiela. 2019. Hyperbolic Graph Neural Networks. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Vol. 32. Curran Associates, Inc.https://proceedings.neurips.cc/paper_files/paper/2019/file/103303dd56a731e377d01f6a37badae3-Paper.pdf
[40]
Aaron Lou, Isay Katsman, Qingxuan Jiang, Serge Belongie, Ser-Nam Lim, and Christopher De Sa. 2020. Differentiating through the Fréchet Mean. In Proceedings of the 37th International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol. 119), Hal Daumé III and Aarti Singh (Eds.). PMLR, 6393–6403. https://proceedings.mlr.press/v119/lou20a.html
[41]
Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z. Sheng, Hui Xiong, and Leman Akoglu. 2023. A Comprehensive Survey on Graph Anomaly Detection With Deep Learning. IEEE Transactions on Knowledge and Data Engineering 35, 12 (2023), 12012–12038. https://doi.org/10.1109/TKDE.2021.3118815
[42]
Gabriel Maciá-Fernández, José Camacho, Roberto Magán-Carrión, Pedro García-Teodoro, and Roberto Therón. 2018. UGR‘16: A new dataset for the evaluation of cyclostationarity-based network IDSs. Computers & Security 73 (2018), 411–424. https://doi.org/10.1016/j.cose.2017.11.004
[43]
Emaad Manzoor, Sadegh M. Milajerdi, and Leman Akoglu. 2016. Fast Memory-efficient Anomaly Detection in Streaming Heterogeneous Graphs. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD ’16). Association for Computing Machinery, New York, NY, USA, 1035–1044. https://doi.org/10.1145/2939672.2939783
[44]
Emile Mathieu, Charline Le Lan, Chris J. Maddison, Ryota Tomioka, and Yee Whye Teh. 2019. Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Vol. 32. Curran Associates, Inc.https://proceedings.neurips.cc/paper_files/paper/2019/file/0ec04cb3912c4f08874dd03716f80df1-Paper.pdf
[45]
Mohamed-Lamine Messai and Hamida Seba. 2023. IoT Network Attack Detection: Leveraging Graph Learning for Enhanced Security. In Proceedings of the 18th International Conference on Availability, Reliability and Security (, Benevento, Italy, ) (ARES ’23). Association for Computing Machinery, New York, NY, USA, Article 84, 7 pages. https://doi.org/10.1145/3600160.3605053
[46]
Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra Bianconi, and Carlo Vittorio Cannistraci. 2017. Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nature communications 8, 1 (2017), 1615. https://doi.org/10.1038/s41467-017-01825-5
[47]
Maximillian Nickel and Douwe Kiela. 2017. Poincaré Embeddings for Learning Hierarchical Representations. In Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Vol. 30. Curran Associates, Inc.https://proceedings.neurips.cc/paper_files/paper/2017/file/59dfa2df42d9e3d41f5b02bfc32229dd-Paper.pdf
[48]
Maximillian Nickel and Douwe Kiela. 2018. Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry. In Proceedings of the 35th International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 3779–3788. https://proceedings.mlr.press/v80/nickel18a.html
[49]
Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asymmetric Transitivity Preserving Graph Embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD ’16). Association for Computing Machinery, New York, NY, USA, 1105–1114. https://doi.org/10.1145/2939672.2939751
[50]
Ivan Ovinnikov. 2019. Poincaré Wasserstein Autoencoder. arXiv preprint arXiv:1901.01427 (2019). https://doi.org/10.48550/arXiv.1901.01427
[51]
Fragkiskos Papadopoulos, Rodrigo Aldecoa, and Dmitri Krioukov. 2015. Network geometry inference using common neighbors. Physical Review E 92, 2 (2015), 022807.
[52]
Fragkiskos Papadopoulos, Maksim Kitsak, M Ángeles Serrano, Marián Boguná, and Dmitri Krioukov. 2012. Popularity versus similarity in growing networks. Nature 489, 7417 (2012), 537–540.
[53]
Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitri Krioukov. 2015. Network Mapping by Replaying Hyperbolic Growth. IEEE/ACM Transactions on Networking 23, 1 (2015), 198–211. https://doi.org/10.1109/TNET.2013.2294052
[54]
Jiwoong Park, Junho Cho, Hyung Jin Chang, and Jin Young Choi. 2021. Unsupervised Hyperbolic Representation Learning via Message Passing Auto-Encoders. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 5512–5522. https://doi.org/10.1109/CVPR46437.2021.00547
[55]
Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, and Guoying Zhao. 2021. Hyperbolic deep neural networks: A survey. IEEE Transactions on pattern analysis and machine intelligence 44, 12 (2021), 10023–10044. https://doi.org/10.1109/TPAMI.2021.3136921
[56]
Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (New York, New York, USA) (KDD ’14). Association for Computing Machinery, New York, NY, USA, 701–710. https://doi.org/10.1145/2623330.2623732
[57]
Tahereh Pourhabibi, Kok-Leong Ong, Booi H. Kam, and Yee Ling Boo. 2020. Fraud detection: A systematic literature review of graph-based anomaly detection approaches. Decision Support Systems 133 (2020), 113303. https://doi.org/10.1016/j.dss.2020.113303
[58]
John G Ratcliffe, S Axler, and KA Ribet. 1994. Foundations of hyperbolic manifolds. Vol. 149. Springer.
[59]
Erzsébet Ravasz and Albert-László Barabási. 2003. Hierarchical organization in complex networks. Phys. Rev. E 67 (Feb 2003), 026112. Issue 2. https://doi.org/10.1103/PhysRevE.67.026112
[60]
Frederic Sala, Chris De Sa, Albert Gu, and Christopher Re. 2018. Representation Tradeoffs for Hyperbolic Embeddings. In Proceedings of the 35th International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, 4460–4469. https://proceedings.mlr.press/v80/sala18a.html
[61]
Sehan Samarakoon, Yushan Siriwardhana, Pawani Porambage, Madhusanka Liyanage, Sang-Yoon Chang, Jinoh Kim, Jonghyun Kim, and Mika Ylianttila. 2022. 5G-NIDD: A Comprehensive Network Intrusion Detection Dataset Generated over 5G Wireless Network. https://doi.org/10.21227/xtep-hv36
[62]
Benjamin Sangster, T. J. O’Connor, Thomas Cook, Robert Fanelli, Erik Dean, William J. Adams, Chris Morrell, and Gregory Conti. 2009. Toward instrumenting network warfare competitions to generate labeled datasets. In Proceedings of the 2nd Conference on Cyber Security Experimentation and Test (Montreal, Canada) (CSET’09). USENIX Association, USA, 9.
[63]
Mohanad Sarhan, Siamak Layeghy, Nour Moustafa, and Marius Portmann. 2021. NetFlow Datasets for Machine Learning-Based Network Intrusion Detection Systems. In Big Data Technologies and Applications, Zeng Deze, Huan Huang, Rui Hou, Seungmin Rho, and Naveen Chilamkurti (Eds.). Springer International Publishing, Cham, 117–135.
[64]
Rik Sarkar. 2012. Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane. In Graph Drawing, Marc van Kreveld and Bettina Speckmann (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 355–366.
[65]
Iman Sharafaldin, Amirhossein Gharib, Arash Habibi Lashkari, and Ali A Ghorbani. 2018. Towards a reliable intrusion detection benchmark dataset. Software Networking 2018, 1 (2018), 177–200. https://doi.org/10.13052/jsn2445-9739.2017.009
[66]
Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. 2018. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization. In International Conference on Information Systems Security and Privacy. https://doi.org/10.5220/0006639801080116
[67]
Iman Sharafaldin, Arash Habibi Lashkari, Saqib Hakak, and Ali A. Ghorbani. 2019. Developing Realistic Distributed Denial of Service (DDoS) Attack Dataset and Taxonomy. In 2019 International Carnahan Conference on Security Technology (ICCST). 1–8. https://doi.org/10.1109/CCST.2019.8888419
[68]
Yuval Shavitt and Tomer Tankel. 2008. Hyperbolic Embedding of Internet Graph for Distance Estimation and Overlay Construction. IEEE/ACM Transactions on Networking 16, 1 (2008), 25–36. https://doi.org/10.1109/TNET.2007.899021
[69]
Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. 2020. Hyperbolic neural networks++. arXiv preprint arXiv:2006.08210 (2020). https://doi.org/10.48550/arXiv.2006.08210
[70]
Jungsuk Song, Hiroki Takakura, and Yasuo Okabe. 2008. Cooperation of Intelligent Honeypots to Detect Unknown Malicious Codes. In 2008 WOMBAT Workshop on Information Security Threats Data Collection and Sharing. 31–39. https://doi.org/10.1109/WISTDCS.2008.10
[71]
Rishi Sonthalia and Anna Gilbert. 2020. Tree! I am no Tree! I am a low dimensional Hyperbolic Embedding. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.). Vol. 33. Curran Associates, Inc., 845–856. https://proceedings.neurips.cc/paper_files/paper/2020/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
[72]
Ryota Suzuki, Ryusuke Takahama, and Shun Onoda. 2019. Hyperbolic Disk Embeddings for Directed Acyclic Graphs. In Proceedings of the 36th International Conference on Machine Learning(Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 6066–6075. https://proceedings.mlr.press/v97/suzuki19a.html
[73]
Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. 2009. A detailed analysis of the KDD CUP 99 data set. In 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications. 1–6. https://doi.org/10.1109/CISDA.2009.5356528
[74]
Abraham A Ungar. 2005. Analytic hyperbolic geometry: Mathematical foundations and applications. World Scientific.
[75]
Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017). https://doi.org/10.48550/arXiv.1710.10903
[76]
Jörg A Walter. 2004. H-MDS: a new approach for interactive visualization with multidimensional scaling in the hyperbolic space. Information systems 29, 4 (2004), 273–292. https://doi.org/10.1016/j.is.2003.10.002
[77]
Xiao Wang, Yiding Zhang, and Chuan Shi. 2019. Hyperbolic Heterogeneous Information Network Embedding. Proceedings of the AAAI Conference on Artificial Intelligence 33, 01 (Jul. 2019), 5337–5344. https://doi.org/10.1609/aaai.v33i01.33015337
[78]
Richard C. Wilson, Edwin R. Hancock, Elżbieta Pekalska, and Robert P.W. Duin. 2014. Spherical and Hyperbolic Embeddings of Data. IEEE Transactions on Pattern Analysis and Machine Intelligence 36, 11 (2014), 2255–2269. https://doi.org/10.1109/TPAMI.2014.2316836
[79]
Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019. Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019). https://doi.org/10.48550/arXiv.1906.00121
[80]
Yiding Zhang, Xiao Wang, Chuan Shi, Xunqiang Jiang, and Yanfang Ye. 2022. Hyperbolic Graph Attention Network. IEEE Transactions on Big Data 8, 6 (2022), 1690–1701. https://doi.org/10.1109/TBDATA.2021.3081431
[81]
Yiding Zhang, Xiao Wang, Chuan Shi, Nian Liu, and Guojie Song. 2021. Lorentzian Graph Convolutional Networks. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW ’21). Association for Computing Machinery, New York, NY, USA, 1249–1261. https://doi.org/10.1145/3442381.3449872
[82]
Min Zhou, Menglin Yang, Bo Xiong, Hui Xiong, and Irwin King. 2023. Hyperbolic Graph Neural Networks: A Tutorial on Methods and Applications. (2023), 5843–5844. https://doi.org/10.1145/3580305.3599562

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ARES '24: Proceedings of the 19th International Conference on Availability, Reliability and Security
July 2024
2032 pages
ISBN:9798400717185
DOI:10.1145/3664476
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 July 2024

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Graph representation learning
  2. graph anomaly detection
  3. hyperbolic space
  4. non-Euclidean embeddings

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • ANR

Conference

ARES 2024

Acceptance Rates

Overall Acceptance Rate 228 of 451 submissions, 51%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 39
    Total Downloads
  • Downloads (Last 12 months)39
  • Downloads (Last 6 weeks)11
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media