Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3664476.3670923acmotherconferencesArticle/Chapter ViewAbstractPublication PagesaresConference Proceedingsconference-collections
research-article

Exploring the influence of the choice of prior of the Variational Auto-Encoder on cybersecurity anomaly detection

Published: 30 July 2024 Publication History

Abstract

The Variational Auto-Encoder (VAE) is a popular generative model as the variance inference in the latent layer, the prior is an important element to improve inference efficient. This research explored the prior in the VAE by comparing the Normal family distributions and other location-scale family distributions in three aspects (performance, robustness, and complexity) in order to find a suitable prior for cybersecurity anomaly detection. Suitable distributions can improve the detection performance, which was verified at UNSW-NB15 and CIC-IDS-2017.

References

[1]
Mingtian Zhang, Tim Z Xiao, Brooks Paige, and David Barber. 2022. Improving vae-based representation learning. arXiv preprint arXiv:2205.14539 (2022).
[2]
Vincent Fortuin. 2022. Priors in bayesian deep learning: A review. International Statistical Review 90, 3 (2022), 563–591.
[3]
Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W. Ober, Florian Wenzel, Gunnar Rätsch, Richard E. Turner, Mark van der Wilk, and Laurence Aitchison. 2022. Bayesian Neural Network Priors Revisited. arxiv:2102.06571 [stat.ML]
[4]
Nour Moustafa, Jiankun Hu, and Jill Slay. 2019. A holistic review of network anomaly detection systems: A comprehensive survey. Journal of Network and Computer Applications 128 (2019), 33–55.
[5]
Ly Vu, Quang Uy Nguyen, Diep N Nguyen, Dinh Thai Hoang, Eryk Dutkiewicz, 2019. Learning latent distribution for distinguishing network traffic in intrusion detection system. In ICC 2019-2019 IEEE international conference on communications (ICC). IEEE, 1–6.
[6]
Haleh Akrami, Sergul Aydore, Richard M Leahy, and Anand A Joshi. 2020. Robust variational autoencoder for tabular data with beta divergence. arXiv preprint arXiv:2006.08204 (2020).
[7]
Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas, and Jaime Lloret. 2017. Conditional variational autoencoder for prediction and feature recovery applied to intrusion detection in iot. Sensors 17, 9 (2017), 1967.
[8]
Seonho Park, George Adosoglou, and Panos M Pardalos. 2022. Interpreting rate-distortion of variational autoencoder and using model uncertainty for anomaly detection. Annals of Mathematics and Artificial Intelligence 90, 7 (2022), 735–752.
[9]
Nat Dilokthanakul, Pedro AM Mediano, Marta Garnelo, Matthew CH Lee, Hugh Salimbeni, Kai Arulkumaran, and Murray Shanahan. 2016. Deep unsupervised clustering with gaussian mixture variational autoencoders. arXiv preprint arXiv:1611.02648 (2016).
[10]
Romain Lopez, Pierre Boyeau, Nir Yosef, Michael Jordan, and Jeffrey Regier. 2020. Decision-making with auto-encoding variational Bayes. Advances in Neural Information Processing Systems 33 (2020), 5081–5092.
[11]
Rong Yao, Chongdang Liu, Linxuan Zhang, and Peng Peng. 2019. Unsupervised anomaly detection using variational auto-encoder based feature extraction. In 2019 IEEE International Conference on Prognostics and Health Management (ICPHM). IEEE, 1–7.
[12]
Haleh Akrami, Anand A Joshi, Jian Li, Sergül Aydöre, and Richard M Leahy. 2022. A robust variational autoencoder using beta divergence. Knowledge-based systems 238 (2022), 107886.
[13]
Yanqing Yang, Kangfeng Zheng, Bin Wu, Yixian Yang, and Xiujuan Wang. 2020. Network intrusion detection based on supervised adversarial variational auto-encoder with regularization. IEEE access 8 (2020), 42169–42184.
[14]
Yanqing Yang, Kangfeng Zheng, Chunhua Wu, and Yixian Yang. 2019. Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network. Sensors 19, 11 (2019), 2528.
[15]
Sultan Zavrak and Murat Iskefiyeli. 2020. Anomaly-based intrusion detection from network flow features using variational autoencoder. IEEE Access 8 (2020), 108346–108358.
[16]
Yifan Guo, Weixian Liao, Qianlong Wang, Lixing Yu, Tianxi Ji, and Pan Li. 2018. Multidimensional time series anomaly detection: A gru-based gaussian mixture variational autoencoder approach. In Asian Conference on Machine Learning. PMLR, 97–112.
[17]
Eric Nalisnick, Lars Hertel, and Padhraic Smyth. 2016. Approximate inference for deep latent gaussian mixtures. In NIPS Workshop on Bayesian Deep Learning, Vol. 2. 131.
[18]
Andreas Kopf, Vincent Fortuin, Vignesh Ram Somnath, and Manfred Claassen. 2021. Mixture-of-Experts Variational Autoencoder for clustering and generating from similarity-based representations on single cell data. PLoS computational biology 17, 6 (2021), e1009086.
[19]
Jinwon An and Sungzoon Cho. 2015. Variational Autoencoder based Anomaly Detection using Reconstruction Probability. https://api.semanticscholar.org/CorpusID:36663713
[20]
Ruoqi Wei, Cesar Garcia, Ahmed El-Sayed, Viyaleta Peterson, and Ausif Mahmood. 2020. Variations in variational autoencoders-a comparative evaluation. Ieee Access 8 (2020), 153651–153670.
[21]
Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Świątkowski, Linh Tran, Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. 2020. How good is the Bayes posterior in deep neural networks really?arXiv preprint arXiv:2002.02405 (2020).
[22]
Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W Ober, Florian Wenzel, Gunnar Rätsch, Richard E Turner, Mark van der Wilk, and Laurence Aitchison. 2021. Bayesian neural network priors revisited. arXiv preprint arXiv:2102.06571 (2021).
[23]
Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. 2015. Importance weighted autoencoders. arXiv preprint arXiv:1509.00519 (2015).
[24]
Nour Moustafa and Jill Slay. 2016. The evaluation of Network Anomaly Detection Systems: Statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set. Information Security Journal: A Global Perspective 25, 1-3 (2016), 18–31.
[25]
Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013).

Index Terms

  1. Exploring the influence of the choice of prior of the Variational Auto-Encoder on cybersecurity anomaly detection

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Other conferences
        ARES '24: Proceedings of the 19th International Conference on Availability, Reliability and Security
        July 2024
        2032 pages
        ISBN:9798400717185
        DOI:10.1145/3664476
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 30 July 2024

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. Cybersecurity anomaly detection
        2. Latent representation
        3. Location-scale Distribution
        4. Normal family Distribution
        5. Prior distribution
        6. Variational Auto-Encoder

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Funding Sources

        • Technological University of the Shannon
        • Hormeon Europe Framework Program

        Conference

        ARES 2024

        Acceptance Rates

        Overall Acceptance Rate 228 of 451 submissions, 51%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 21
          Total Downloads
        • Downloads (Last 12 months)21
        • Downloads (Last 6 weeks)2
        Reflects downloads up to 09 Feb 2025

        Other Metrics

        Citations

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media