Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3673038.3673086acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicppConference Proceedingsconference-collections
research-article
Open access

Achieving Efficient Scheduling based on Accurate Measurement of Small Flows in Data Center

Published: 12 August 2024 Publication History

Abstract

In modern data centers, many flow scheduling schemes are proposed to accelerate data transfer and improve user experience. However, these schemes assume ideally the prior knowledge of the flow size information, which, unfortunately, is hard to obtain without modifying data center applications. The sketch-based approaches measure the flow size at switch with a compact memory structure, high throughput, and acceptable accuracy loss. However, existing sketches commonly focus on large or specific flows, while most flows in data center networks are small, resulting in missing or overestimated size information about small flows. We propose Strainer Sketch, which enables accurate and fast measurement of small flows with small memory and flexible deployment in a variety of scheduling algorithms. Specifically, Strainer Sketch uses the hierarchical structure to mitigate hash collisions between large and small flows, and the probabilistic counting algorithm to mitigate overestimation due to hash collisions between small flows. Furthermore, we propose a packet scheduling algorithm SW-PIFO, which provides the flow discrimination for a huge number of small flows by using a limited number of queues. Through the testbed experiments and simulations of typical data center applications, we show that our scheme reduces the small flow completion time (FCT) by up to 56.7<Formula format="inline"><TexMath><?TeX $\%$?></TexMath><AltText>Math 1</AltText><File name="icpp24-48-inline1" type="svg"/></Formula> compared with flow scheduling using classic sketches.

References

[1]
2024. Barefoot Tofino. https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino.html.
[2]
2024. Caida. http://www.caida.org/data/overview/.
[3]
2024. The Network Simulator ns-2. https://www.isi.edu/websites/nsnam/ns/.
[4]
L. Adamic and B. Huberman. 2002. Zipf’s law and the Internet.Glottometrics 3, 1 (2002), 143–150.
[5]
A. Alcoz, A. Dietmüller, and L. Vanbever. 2020. SP-PIFO: Approximating Push-In First-Out Behaviors using Strict-Priority Queues. In Proc. USENIX NSDI. 59–76.
[6]
M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker. 2013. pfabric: Minimal near-optimal datacenter transport. In Proc. ACM SIGCOMM. 435–446.
[7]
W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang. 2017. PIAS: Practical information-agnostic flow scheduling for commodity data centers. IEEE/ACM Transactions on Networking 25, 4 (2017), 1954–1967.
[8]
K. Chen, L. Xiang, and M. Iwaihara. 2005. Time-decaying bloom filters for data streams with skewed distributions. In Proc. IEEE RIDE-SDMA. 63–69.
[9]
G. Cormode and M. Hadjieleftheriou. 2008. Finding frequent items in data streams. In Proc. ACM VLDB. 1530–1541.
[10]
G. Cormode and S. Muthukrishnan. 2005. An improved data stream summary: the count-min sketch and its applications. Journal of Algorithms 55, 1 (2005), 58–75.
[11]
A. R Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee. 2011. DevoFlow: Scaling flow management for high-performance networks. In Proc. ACM SIGCOMM. 254–265.
[12]
C. Estan and G. Varghese. 2002. New directions in traffic measurement and accounting. In Proc. ACM SIGCOMM. 323–336.
[13]
J. Huang, W. Zhang, Y. Li, L. Li, Z. Li, J. Ye, and J. Wang. 2023. ChainSketch: An Efficient and Accurate Sketch for Heavy Flow Detection. IEEE/ACM Transactions on Networking 31, 02 (2023), 738–753.
[14]
C. Lee, S. J. Park, A. Kejriwal, S. Matsushita, and J. Ousterhout. 2015. Implementing linearizability at large scale and low latency. In Proc. ACM SOSP. 71–86.
[15]
Z. R. Liu, Y. K. Zhao, Z. C. Fan, T. Yang, X. D. Li, R. W. Zhang, K. C. Yang, Z. H. Jiang, Z. Zhong, Y. Huang, C. Liu, J. Hu, G. Xie, and B. Cui. 2022. Burstbalancer: Do less, better balance for large-scale data center traffic. In Proc. IEEE ICNP. 1–13.
[16]
B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout. 2018. Homa: A receiver-driven low-latency transport protocol using network priorities. In Proc. ACM SIGCOMM. 221–235.
[17]
A. Munir, I. Qazi, A. Mushtaq, S. Ismail, M. Iqbal, and B. Khan. 2013. Minimizing flow completion times in data centers. In Proc. IEEE INFOCOM. 2157–2165.
[18]
J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri, S. J. Park, M. Rosenblum, S. Rumble, R. Stutsman, and S. Yang. 2015. The RAMCloud storage system. ACM Transactions on Computer Systems 33, 3 (2015), 1–55.
[19]
K. Yang, S. Long, Q. Shi, Y. Li, Z. Liu, Y. Wu, T. Yang, and Z. Jia. 2023. Sketchint: Empowering int with towersketch for per-flow per-switch measurement. IEEE Transactions on Parallel and Distributed Systems 34, 11 (2023), 2876–2894.
[20]
T. Yang, J. Gong, H. Zhang, L. Shi, and X. Li. 2018. Heavyguardian: Separate and guard hot items in data streams. In Proc. ACM SIGKDD. 2584–2593.
[21]
T. Yang, J. Jiang, P. Liu, Q. Huang, J. Z. Gong, Y. Zhou, R. Miao, X. M. Li, and S. Uhlig. 2018. Elastic sketch: Adaptive and fast network-wide measurements. In Proc. ACM SIGCOMM. 561–575.
[22]
T. Yang, J. Z. Li, Y. K. Zhao, K. C. Yang, H. Wang, J. Jiang, Y. D. Zhang, and N. Zhang. 2022. QCluster: clustering packets for flow scheduling. In Proc. ACM WWW. 1752–1763.
[23]
T. Yang, Y. Zhou, H. Jin, S. G. Chen, and X. M. Li. 2017. Pyramid sketch: A sketch framework for frequency estimation of data streams. In Proc. ACM VLDB. 1442–1453.
[24]
D. Yu, Y. Zhu, B. Arzani, R. Fonseca, T. Zhang, K. Deng, and L. Yuan. 2019. dShark: A General, Easy to Program and Scalable Framework for Analyzing In-network Packet Traces. In Proc. USENIX NSDI. 207–220.
[25]
J. Zhang, W. Bai, and K. Chen. 2019. Enabling ECN for Datacenter Networks with RTT Variations. In Proc. ACM CoNEXT. 233–245.

Index Terms

  1. Achieving Efficient Scheduling based on Accurate Measurement of Small Flows in Data Center

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICPP '24: Proceedings of the 53rd International Conference on Parallel Processing
    August 2024
    1279 pages
    ISBN:9798400717932
    DOI:10.1145/3673038
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 12 August 2024

    Check for updates

    Author Tags

    1. Data Center
    2. Flow Scheduling
    3. Sketch

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    ICPP '24

    Acceptance Rates

    Overall Acceptance Rate 91 of 313 submissions, 29%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 101
      Total Downloads
    • Downloads (Last 12 months)101
    • Downloads (Last 6 weeks)32
    Reflects downloads up to 25 Dec 2024

    Other Metrics

    Citations

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media