Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3677525.3678660acmconferencesArticle/Chapter ViewAbstractPublication PagesgooditConference Proceedingsconference-collections
research-article
Open access

Fair Inference for Discrete Latent Variable Models: An Intersectional Approach

Published: 04 September 2024 Publication History

Abstract

It is now widely acknowledged that machine learning models, trained on data without due care, often exhibit discriminatory behavior. Traditional fairness research has mainly focused on supervised learning tasks, particularly classification. While fairness in unsupervised learning has received some attention, the literature has primarily addressed fair representation learning of continuous embeddings. This paper, however, takes a different approach by investigating fairness in unsupervised learning using graphical models with discrete latent variables. We develop a fair stochastic variational inference method for discrete latent variables. Our approach uses a fairness penalty on the variational distribution that reflects the principles of intersectionality, a comprehensive perspective on fairness from the fields of law, social sciences, and humanities. Intersectional fairness brings the challenge of data sparsity in minibatches, which we address via a stochastic approximation approach. We first show the utility of our method in improving equity and fairness for clustering using naïve Bayes and Gaussian mixture models on benchmark datasets. To demonstrate the generality of our approach and its potential for real-world impact, we then develop a specialized graphical model for criminal justice risk assessments, and use our fairness approach to prevent the inferences from encoding unfair societal biases.

References

[1]
A. Alemi, B. Poole, I. Fischer, J. Dillon, R. Saurous, and K. Murphy. 2018. Fixing a broken ELBO. In ICML. PMLR, 159–168.
[2]
J. Angwin, J. Larson, S. Mattu, and L. Kirchner. 2016. Machine bias: There’s software used across the country to predict future criminals. and it’s biased against blacks. ProPublica 23 (2016).
[3]
S. Barocas and A. Selbst. 2016. Big data’s disparate impact. Calif. L. Rev. 104 (2016), 671.
[4]
R. Berk and D. Berk. 2019. Machine learning risk assessments in criminal justice settings. Springer.
[5]
R. Berk, H. Heidari, S. Jabbari, M. Joseph, M. Kearns, J. Morgenstern, S. Neel, and A. Roth. 2017. A convex framework for fair regression. arXiv preprint arXiv:1706.02409 (2017).
[6]
R. Berk, H. Heidari, S. Jabbari, M. Kearns, and A. Roth. 2018. Fairness in criminal justice risk assessments: The state of the art. Sociol. Methods Res. (2018).
[7]
T. Bolukbasi, K. Chang, J. Zou, V. Saligrama, and A. Kalai. 2016. Man is to computer programmer as woman is to homemaker? debiasing word embeddings. NeurIPS 29 (2016).
[8]
S. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, and S. Bengio. 2016. Generating Sentences from a Continuous Space. In CoNLL. 10–21.
[9]
T. Caliński and J. Harabasz. 1974. A dendrite method for cluster analysis. Commun. Stat. 3, 1 (1974), 1–27.
[10]
A. Campolo, M. Sanfilippo, M. Whittaker, and K. Crawford. 2017. AI Now 2017 Report. AI Now (2017).
[11]
L. Carroll and M. Gonzalez. 2014. Out of place: Racial stereotypes and the ecology of frisks and searches following traffic stops. J. Res. Crime Delinq. 51, 5 (2014), 559–584.
[12]
F. Chierichetti, R. Kumar, S. Lattanzi, and S. Vassilvitskii. 2017. Fair clustering through fairlets. NeurIPS 30 (2017).
[13]
P. Collins. 2002. Black feminist thought: Knowledge, consciousness, and the politics of empowerment. Routledge.
[14]
E. Creager, D. Madras, J. Jacobsen, 2019. Flexibly fair representation learning by disentanglement. In ICML. PMLR, 1436–1445.
[15]
K. Crenshaw. 1989. Demarginalizing the intersection of race and sex: A black feminist critique of antidiscrimination doctrine, feminist theory and antiracist politics. U. Chi. Legal F. (1989), 139–167.
[16]
D. Davies and D. Bouldin. 1979. A cluster separation measure. TPAMI (1979), 224–227.
[17]
B. Dupont, Y. Stevens, H. Westermann, and M. Joyce. 2018. Artificial Intelligence in the Context of Crime and Criminal justice. SSRN 3857367 (2018).
[18]
C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. 2012. Fairness through awareness. In Theo. Comp. Sci. ACM, 214–226.
[19]
H. Edwards and A. Storkey. 2016. Censoring representations with an adversary. In ICML.
[20]
J. Foulds, R. Islam, K. Keya, and S. Pan. 2020. Bayesian Modeling of Intersectional Fairness: The Variance of Bias. In SDM. SIAM, 424–432.
[21]
J. Foulds, R. Islam, K. Keya, and S. Pan. 2020. An intersectional definition of fairness. In ICDE. IEEE, 1918–1921.
[22]
J. Foulds and S. Pan. 2020. Are Parity-Based Notions of AI Fairness Desirable?TCDE 43, 4 (2020), 51–73.
[23]
A. Gelman, J. Fagan, and A. Kiss. 2007. An analysis of the New York City police department’s “stop-and-frisk” policy in the context of claims of racial bias. J. Am. Stat. Assoc. 102, 479 (2007), 813–823.
[24]
A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola. 2008. A Kernel Method for the Two-Sample Problem. JMLR 1 (2008), 1–10.
[25]
M. Hardt, E. Price, and N. Srebro. 2016. Equality of opportunity in supervised learning. NeurIPS 29 (2016).
[26]
D. Harris. 1996. Driving while black and all other traffic offenses: The Supreme Court and pretextual traffic stops. J. Crim. Law Criminol. 87 (1996), 544.
[27]
D. Harris. 1999. The stories, the statistics, and the law: Why driving while black matters. Minn. Law Rev. 84 (1999), 265.
[28]
I. Higgins, L. Matthey, A. Pal, 2017. beta-vae: Learning basic visual concepts with a constrained variational framework. In ICLR.
[29]
M. Hoffman, D. Blei, C. Wang, and J. Paisley. 2013. Stochastic variational inference. JMLR (2013).
[30]
R. Islam, H. Chen, and Y. Cai. 2024. Fairness without Demographics through Shared Latent Space-Based Debiasing. In AAAI, Vol. 38. 12717–12725.
[31]
R. Islam, K. Keya, Z. Zeng, S. Pan, and J. Foulds. 2021. Debiasing career recommendations with neural fair collaborative filtering. In WWW. 3779–3790.
[32]
E. Jang, S. Gu, and B. Poole. 2016. Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).
[33]
M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. 1999. An introduction to variational methods for graphical models. ML 37, 2 (1999), 183–233.
[34]
M. Kearns, S. Neel, A. Roth, and Z. Wu. 2018. Preventing fairness gerrymandering: Auditing and learning for subgroup fairness. In ICML. PMLR, 2564–2572.
[35]
K.r Keya, R. Islam, S. Pan, I. Stockwell, and J. Foulds. 2021. Equitable allocation of healthcare resources with fair survival models. In SDM. SIAM, 190–198.
[36]
I. Khemakhem, D. Kingma, R. Monti, and A. Hyvarinen. 2020. Variational autoencoders and nonlinear ica: A unifying framework. In AISTATS. PMLR, 2207–2217.
[37]
H. Kim and A. Mnih. 2018. Disentangling by factorising. In ICML. PMLR, 2649–2658.
[38]
D. Kingma, S. Mohamed, D. Jimenez, and M. Welling. 2014. Semi-supervised learning with deep generative models. NeurIPS 27 (2014).
[39]
D. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. 2016. Improved variational inference with inverse autoregressive flow. NeurIPS 29 (2016).
[40]
D. Kingma and M. Welling. 2014. Auto-Encoding Variational Bayes. In ICML.
[41]
M. Kusner, J. Loftus, C. Russell, and R. Silva. 2017. Counterfactual fairness. In NeurIPS. 4069–4079.
[42]
F. Locatello, G. Abbati, T. Rainforth, S. Bauer, B. Schölkopf, and O. Bachem. 2019. On the Fairness of Disentangled Representations. In NeurIPS, Vol. 32. 14611–14624.
[43]
C. Louizos, K. Swersky, Y. Li, M. Welling, and R. Zemel. 2016. The Variational Fair Autoencoder. In ICLR.
[44]
C. Maddison, A. Mnih, and Y. Teh. 2016. The concrete distribution: A continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 (2016).
[45]
D. Madras, E. Creager, T. Pitassi, and R. Zemel. 2018. Learning adversarially fair and transferable representations. In ICML. PMLR, 3384–3393.
[46]
C. Munoz, M. Smith, and D. Patil. 2016. Big data: A report on algorithmic systems. EOP (2016).
[47]
S. Noble. 2018. Algorithms of oppression. In Algorithms of Oppression. NYU.
[48]
C. O’neil. 2016. Weapons of math destruction: How big data increases inequality and threatens democracy. Crown.
[49]
T. Pelsmaeker and W. Aziz. 2020. Effective Estimation of Deep Generative Language Models. In ACL. 7220–7236.
[50]
D. Rezende, S. Mohamed, and D. Wierstra. 2014. Stochastic backpropagation and approximate inference in deep generative models. In ICML. PMLR, 1278–1286.
[51]
C. Rigano. 2019. Using artificial intelligence to address criminal justice needs. NIJ 280 (2019), 1–10.
[52]
H. Robbins and S. Monro. 1951. A stochastic approximation method. Ann. Math. Stat. (1951), 400–407.
[53]
S. Semeniuta, A. Severyn, and E. Barth. 2017. A Hybrid Convolutional Variational Autoencoder for Text Generation. In EMNLP. 627–637.
[54]
C. Simoiu, S. Corbett-Davies, S. Goel, 2017. The problem of infra-marginality in outcome tests for discrimination. AOAS 11, 3 (2017), 1193–1216.
[55]
J. Song, P. Kalluri, A. Grover, S. Zhao, and S. Ermon. 2019. Learning controllable fair representations. In AISTATS. PMLR, 2164–2173.
[56]
A. Srivastava and C. Sutton. 2017. Autoencoding Variational Inference for Topic Models. In ICLR.
[57]
P. Warren, D. Tomaskovic-Devey, W. Smith, M. Zingraff, and M. Mason. 2006. Driving while black: Bias processes and racial disparity in police stops. Criminology 44, 3 (2006), 709–738.
[58]
M. Zafar, I. Valera, M. Gomez, and K. Gummadi. 2017. Fairness beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment. In WWW. 1171–1180.
[59]
R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork. 2013. Learning fair representations. In ICML. PMLR, 325–333.
[60]
H. Zhao, A. Coston, T. Adel, and G. Gordon. 2020. Conditional learning of fair representations. In ICLR.
[61]
H. Zhao and G. Gordon. 2019. Inherent tradeoffs in learning fair representations. NeurIPS 32 (2019).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GoodIT '24: Proceedings of the 2024 International Conference on Information Technology for Social Good
September 2024
481 pages
ISBN:9798400710940
DOI:10.1145/3677525
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 September 2024

Check for updates

Author Tags

  1. fairness in AI
  2. intersectionality
  3. probabilistic graphical models
  4. stochastic variational inference

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • NSF
  • NIST

Conference

GoodIT '24
Sponsor:

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 131
    Total Downloads
  • Downloads (Last 12 months)131
  • Downloads (Last 6 weeks)41
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media