Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3687151.3687154acmotherconferencesArticle/Chapter ViewAbstractPublication PagesrecsysConference Proceedingsconference-collections
research-article
Open access

Exploiting Contextual Normalizations and Article Endorsement for News Recommendation

Published: 14 October 2024 Publication History

Abstract

We provide an overview of the approach used as team FeatureSalad for the ACM RecSys Challenge 2024, organized by Ekstra Bladet. The competition addressed the problem of News Recommendation, where the goal is to predict which article a user will click on given the list of articles that are shown to them. Our solution is based on a stacking ensemble of consolidated algorithms, such as gradient boosting for decision trees and neural networks. It relies on numerous features, which model the interest of a user and the lifecycle of an article. The proposed solution allowed our team to rank first among the academic teams, and sixth overall.

References

[1]
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
[2]
André Altmann, Laura Tolosi, Oliver Sander, and Thomas Lengauer. 2010. Permutation importance: a corrected feature importance measure. Bioinform. 26, 10 (2010), 1340–1347. https://doi.org/10.1093/BIOINFORMATICS/BTQ134
[3]
Paolo Basso, Arturo Benedetti, Nicola Cecere, Alessandro Maranelli, Salvatore Marragony, Samuele Peri, Andrea Riboni, Alessandro Verosimile, Davide Zanutto, and Maurizio Ferrari Dacrema. 2023. Pessimistic Rescaling and Distribution Shift of Boosting Models for Impression-Aware Online Advertising Recommendation. In ACM RecSys Challenge 2023, Singapore, 19 September 2023. ACM, 33–38. https://doi.org/10.1145/3626221.3627288
[4]
Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. 2006. Learning to Rank with Nonsmooth Cost Functions. In Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 4-7, 2006, Bernhard Schölkopf, John C. Platt, and Thomas Hofmann (Eds.). MIT Press, 193–200. https://proceedings.neurips.cc/paper/2006/hash/af44c4c56f385c43f2529f9b1b018f6a-Abstract.html
[5]
Luca Carminati, Giacomo Lodigiani, Pietro Maldini, Samuele Meta, Stiven Metaj, Arcangelo Pisa, Alessandro Sanvito, Mattia Surricchio, Fernando Benjamín Pérez Maurera, Cesare Bernardis, and Maurizio Ferrari Dacrema. 2021. Lightweight and Scalable Model for Tweet Engagements Predictions in a Resource-constrained Environment. In RecSys Challenge 2021: Proceedings of the Recommender Systems Challenge 2021, Amsterdam, The Netherlands, 1 October 2021. ACM, 28–33. https://doi.org/10.1145/3487572.3487597
[6]
Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. 2016. Wide & Deep Learning for Recommender Systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, DLRS@RecSys 2016, Boston, MA, USA, September 15, 2016, Alexandros Karatzoglou, Balázs Hidasi, Domonkos Tikk, Oren Sar Shalom, Haggai Roitman, Bracha Shapira, and Lior Rokach (Eds.). ACM, 7–10. https://doi.org/10.1145/2988450.2988454
[7]
Nicola Della Volpe, Lorenzo Mainetti, Alessio Martignetti, Andrea Menta, Riccardo Pala, Giacomo Polvanesi, Francesco Sammarco, Fernando Benjamin Perez Maurera, Cesare Bernardis, and Maurizio Ferrari Dacrema. 2022. Lightweight Model for Session-Based Recommender Systems with Seasonality Information in the Fashion Domain. In Proceedings of the Recommender Systems Challenge 2022 (Seattle, WA, USA) (RecSysChallenge ’22). Association for Computing Machinery, New York, NY, USA, 18–23. https://doi.org/10.1145/3556702.3556829
[8]
Mukund Deshpande and George Karypis. 2004. Item-based top-N recommendation algorithms. ACM Trans. Inf. Syst. 22, 1 (jan 2004), 143–177. https://doi.org/10.1145/963770.963776
[9]
Nicolò Felicioni, Andrea Donati, Luca Conterio, Luca Bartoccioni, Davide Yi Xian Hu, Cesare Bernardis, and Maurizio Ferrari Dacrema. 2020. Multi-Objective Blended Ensemble For Highly Imbalanced Sequence Aware Tweet Engagement Prediction. In Proceedings of the Recommender Systems Challenge 2020 (Virtual Event, Brazil) (RecSysChallenge ’20). Association for Computing Machinery, New York, NY, USA, 29–33. https://doi.org/10.1145/3415959.3415998
[10]
Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. 2022. Why do tree-based models still outperform deep learning on typical tabular data?Advances in neural information processing systems 35 (2022), 507–520.
[11]
Andrey Gulin, Igor Kuralenok, and Dmitry Pavlov. 2011. Winning The Transfer Learning Track of Yahoo!’s Learning To Rank Challenge with YetiRank. In Proceedings of the Yahoo! Learning to Rank Challenge, held at ICML 2010, Haifa, Israel, June 25, 2010(JMLR Proceedings, Vol. 14), Olivier Chapelle, Yi Chang, and Tie-Yan Liu (Eds.). JMLR.org, 63–76. http://proceedings.mlr.press/v14/gulin11a.html
[12]
Dietmar Jannach, Gabriel de Souza P. Moreira, and Even Oldridge. 2020. Why Are Deep Learning Models Not Consistently Winning Recommender Systems Competitions Yet? A Position Paper. In Proceedings of the Recommender Systems Challenge 2020 (Virtual Event, Brazil) (RecSysChallenge ’20). Association for Computing Machinery, New York, NY, USA, 44–49. https://doi.org/10.1145/3415959.3416001
[13]
Manu Joseph and Harsh Raj. 2024. GANDALF: Gated Adaptive Network for Deep Automated Learning of Features. arxiv:2207.08548 [cs.LG] https://arxiv.org/abs/2207.08548
[14]
Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 3146–3154. https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
[15]
Marvin Minsky and Seymour Papert. 1969. Perceptrons: An Introduction to Computational Geometry. MIT Press, Cambridge, MA, USA.
[16]
Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin. 2018. CatBoost: unbiased boosting with categorical features. In Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (Eds.). 6639–6649. https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
[17]
Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. ArXiv abs/1910.01108 (2019).
[18]
Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & Cross Network for Ad Click Predictions. CoRR abs/1708.05123 (2017). arXiv:1708.05123http://arxiv.org/abs/1708.05123
[19]
Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. 2020. MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers. arxiv:2002.10957 [cs.CL]
[20]
David H. Wolpert. 1992. Stacked generalization. Neural Networks 5, 2 (1992), 241–259. https://doi.org/10.1016/S0893-6080(05)80023-1
[21]
Chuhan Wu, Fangzhao Wu, Yongfeng Huang, and Xing Xie. 2022. Personalized News Recommendation: Methods and Challenges. arxiv:2106.08934 [cs.IR] https://arxiv.org/abs/2106.08934
[22]
In-Kwon Yeo and Richard A. Johnson. 2000. A New Family of Power Transformations to Improve Normality or Symmetry. Biometrika 87, 4 (2000), 954–959. http://www.jstor.org/stable/2673623

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
RecSysChallenge '24: Proceedings of the Recommender Systems Challenge 2024
October 2024
63 pages
ISBN:9798400711275
DOI:10.1145/3687151
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 October 2024

Check for updates

Author Tags

  1. ACM Recsys Challenge 2024
  2. Gradient Boosting for Decision Trees
  3. Neural Networks
  4. News Recommendation
  5. Recommender Systems
  6. Stacking

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

RecSys Challenge '24
RecSys Challenge '24: ACM RecSys Challenge 2024
October 14 - 18, 2024
Bari, Italy

Acceptance Rates

Overall Acceptance Rate 11 of 15 submissions, 73%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 157
    Total Downloads
  • Downloads (Last 12 months)157
  • Downloads (Last 6 weeks)55
Reflects downloads up to 17 Jan 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media