Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Free access
Just Accepted

A Unified Framework for Multi-Domain CTR Prediction via Large Language Models

Online AM: 14 October 2024 Publication History

Abstract

Multi-Domain Click-Through Rate (MDCTR) prediction is crucial for online recommendation platforms, which involves providing personalized recommendation services to users in different domains. However, current MDCTR models are confronted with the following limitations. Firstly, due to varying data sparsity in different domains, models can easily be dominated by some specific domains, which leads to significant performance degradation in other domains (i.e., the “seesaw phenomenon”). Secondly, when new domain emerges, the scalability of existing methods is limited, making it difficult to adapt to the dynamic growth of the domain. Traditional MDCTR models usually use one-hot encoding for semantic information such as product titles, thus losing rich semantic information and leading to insufficient generalization of the model. In this paper, we propose a novel solution Uni-CTR to address these challenges. Uni-CTR leverages Large Language Model (LLM) to extract layer-wise semantic representations that capture domain commonalities, mitigating the seesaw phenomenon and enhancing generalization. Besides, it incorporates a pluggable domain-specific network to capture domain characteristics, ensuring scalability to dynamic domain growth. Experimental results on public datasets and industrial scenarios show that Uni-CTR significantly outperforms state-of-the-art (SOTA) models. In addition, Uni-CTR shows significant results in zero shot prediction. Code is available at https://anonymous.4open.science/r/multi-domain.

References

[1]
Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. 2023. TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. In Proceedings of the 17th ACM Conference on Recommender Systems, RecSys 2023, Singapore, Singapore, September 18-22, 2023, Jie Zhang, Li Chen, Shlomo Berkovsky, Min Zhang, Tommaso Di Noia, Justin Basilico, Luiz Pizzato, and Yang Song (Eds.). ACM, 1007–1014. https://doi.org/10.1145/3604915.3608857
[2]
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., virtual, 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
[3]
Rich Caruana. 1997. Multitask Learning. Mach. Learn. 28, 1 (1997), 41–75. https://doi.org/10.1023/A:1007379606734
[4]
Rich Caruana. 1997. Multitask Learning. Mach. Learn. 28, 1 (1997), 41–75. https://doi.org/10.1023/A:1007379606734
[5]
Jianxin Chang, Chenbin Zhang, Yiqun Hui, Dewei Leng, Yanan Niu, Yang Song, and Kun Gai. 2023. PEPNet: Parameter and Embedding Personalized Network for Infusing with Personalized Prior Information. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023, Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (Eds.). ACM, Long Beach, CA, USA, 3795–3804. https://doi.org/10.1145/3580305.3599884
[6]
Olivier Chapelle and S. Sathiya Keerthi. 2010. Efficient algorithms for ranking with SVMs. Inf. Retr. 13, 3 (2010), 201–215. https://doi.org/10.1007/S10791-009-9109-9
[7]
Junxuan Chen, Baigui Sun, Hao Li, Hongtao Lu, and Xian-Sheng Hua. 2016. Deep CTR Prediction in Display Advertising. In Proceedings of the 24th ACM International Conference on Multimedia (Amsterdam, The Netherlands) (MM ’16). Association for Computing Machinery, New York, NY, USA, 811–820. https://doi.org/10.1145/2964284.2964325
[8]
Xu Chen, Zida Cheng, Shuai Xiao, Xiaoyi Zeng, and Weilin Huang. 2023. Cross-domain Augmentation Networks for Click-Through Rate Prediction. arXiv:2305.03953 [cs.IR]
[9]
David R Cox. 1958. The regression analysis of binary sequences. Journal of the Royal Statistical Society Series B: Statistical Methodology 20, 2 (1958), 215–232.
[10]
Zeyu Cui, Jianxin Ma, Chang Zhou, Jingren Zhou, and Hongxia Yang. 2022. M6-Rec: Generative Pretrained Language Models are Open-Ended Recommender Systems. arXiv:2205.08084 [cs.IR]
[11]
Weiwei Deng, Xiaoliang Ling, Yang Qi, Tunzi Tan, Eren Manavoglu, and Qi Zhang. 2018. Ad Click Prediction in Sequence with Long Short-Term Memory Networks: an Externality-aware Model. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018, Kevyn Collins-Thompson, Qiaozhu Mei, Brian D. Davison, Yiqun Liu, and Emine Yilmaz (Eds.). ACM, Ann Arbor, MI, USA, 1065–1068. https://doi.org/10.1145/3209978.3210071
[12]
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computational Linguistics, Minneapolis, MN, USA, 4171–4186. https://doi.org/10.18653/V1/N19-1423
[13]
Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. GLM: General Language Model Pretraining with Autoregressive Blank Infilling. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (Eds.). Association for Computational Linguistics, Dublin, Ireland, 320–335. https://doi.org/10.18653/V1/2022.ACL-LONG.26
[14]
Frank Emmert-Streib, Zhen Yang, Han Feng, Shailesh Tripathi, and Matthias Dehmer. 2020. An Introductory Review of Deep Learning for Prediction Models With Big Data. Frontiers Artif. Intell. 3 (2020), 4. https://doi.org/10.3389/FRAI.2020.00004
[15]
Kun Gai, Xiaoqiang Zhu, Han Li, Kai Liu, and Zhe Wang. 2017. Learning Piece-wise Linear Models from Large Scale Data for Ad Click Prediction. arXiv:1704.05194 [stat.ML]
[16]
Heiko Gebauer, Marco Paiola, Nicola Saccani, and Mario Rapaccini. 2021. Digital servitization: Crossing the perspectives of digitization and servitization. Industrial Marketing Management 93 (2021), 382–388. https://doi.org/10.1016/j.indmarman.2020.05.011
[17]
Rohit Girdhar and Deva Ramanan. 2017. Attentional Pooling for Action Recognition. In Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc., Long Beach, CA, USA. https://proceedings.neurips.cc/paper_files/paper/2017/file/67c6a1e7ce56d3d6fa748ab6d9af3fd7-Paper.pdf
[18]
Rafael Glauber and Angelo C. Loula. 2019. Collaborative Filtering vs. Content-Based Filtering: differences and similarities. CoRR abs/1912.08932 (2019). arXiv:1912.08932 http://arxiv.org/abs/1912.08932
[19]
Yuqi Gong, Xichen Ding, Yehui Su, Kaiming Shen, Zhongyi Liu, and Guannan Zhang. 2023. An Unified Search and Recommendation Foundation Model for Cold-Start Scenario. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM 2023, Birmingham, United Kingdom, October 21-25, 2023, Ingo Frommholz, Frank Hopfgartner, Mark Lee, Michael Oakes, Mounia Lalmas, Min Zhang, and Rodrygo L. T. Santos (Eds.). ACM, Birmingham, United Kingdom, 4595–4601. https://doi.org/10.1145/3583780.3614657
[20]
Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, Carles Sierra (Ed.). ijcai.org, Melbourne, Australia, 1725–1731. https://doi.org/10.24963/IJCAI.2017/239
[21]
Wei Guo, Chenxu Zhu, Fan Yan, Bo Chen, Weiwen Liu, Huifeng Guo, Hongkun Zheng, Yong Liu, and Ruiming Tang. 2023. DFFM: Domain Facilitated Feature Modeling for CTR Prediction. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM 2023, Birmingham, United Kingdom, October 21-25, 2023, Ingo Frommholz, Frank Hopfgartner, Mark Lee, Michael Oakes, Mounia Lalmas, Min Zhang, and Rodrygo L. T. Santos (Eds.). ACM, Birmingham, United Kingdom, 4602–4608. https://doi.org/10.1145/3583780.3615469
[22]
Junyou He, Guibao Mei, Feng Xing, Xiaorui Yang, Yongjun Bao, and Weipeng Yan. 2020. DADNN: Multi-Scene CTR Prediction via Domain-Aware Deep Neural Network. arXiv:2011.11938 [cs.AI]
[23]
Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023. DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, Kigali, Rwanda. https://openreview.net/pdf?id=sE7-XhLxHA
[24]
Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2021. Deberta: decoding-Enhanced Bert with Disentangled Attention. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, Virtual Event, Austria. https://openreview.net/forum?id=XPZIaotutsD
[25]
Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large Language Models. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, Virtual Event. https://openreview.net/forum?id=nZeVKeeFYf9
[26]
Guangneng Hu, Yu Zhang, and Qiang Yang. 2018. CoNet: Collaborative Cross Networks for Cross-Domain Recommendation. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018, Torino, Italy, October 22-26, 2018, Alfredo Cuzzocrea, James Allan, Norman W. Paton, Divesh Srivastava, Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selçuk Candan, Alexandros Labrinidis, Assaf Schuster, and Haixun Wang (Eds.). ACM, Torino, Italy, 667–676. https://doi.org/10.1145/3269206.3271684
[27]
Tongwen Huang, Zhiqi Zhang, and Junlin Zhang. 2019. FiBiNET: combining feature importance and bilinear feature interaction for click-through rate prediction. In Proceedings of the 13th ACM Conference on Recommender Systems, RecSys 2019, Copenhagen, Denmark, September 16-20, 2019, Toine Bogers, Alan Said, Peter Brusilovsky, and Domonkos Tikk (Eds.). ACM, Copenhagen, Denmark, 169–177. https://doi.org/10.1145/3298689.3347043
[28]
Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. 2019. What Does BERT Learn about the Structure of Language?. In Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, Anna Korhonen, David R. Traum, and Lluís Màrquez (Eds.). Association for Computational Linguistics, Florence, Italy, 3651–3657. https://doi.org/10.18653/V1/P19-1356
[29]
Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. 2019. What Does BERT Learn about the Structure of Language?. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Anna Korhonen, David Traum, and Lluís Màrquez (Eds.). Association for Computational Linguistics, Florence, Italy, 3651–3657. https://doi.org/10.18653/v1/P19-1356
[30]
Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. 2020. TinyBERT: Distilling BERT for Natural Language Understanding. In Findings of the Association for Computational Linguistics: EMNLP 2020, Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics, Online, 4163–4174. https://doi.org/10.18653/v1/2020.findings-emnlp.372
[31]
Yu-Chin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-aware Factorization Machines for CTR Prediction. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, September 15-19, 2016, Shilad Sen, Werner Geyer, Jill Freyne, and Pablo Castells (Eds.). ACM, Boston, MA, USA, 43–50. https://doi.org/10.1145/2959100.2959134
[32]
Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling Laws for Neural Language Models. arXiv:2001.08361 [cs.LG]
[33]
Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). OpenReview.net, San Diego, CA, USA. http://arxiv.org/abs/1412.6980
[34]
Anders Krogh and John Hertz. 1991. A Simple Weight Decay Can Improve Generalization. In Advances in Neural Information Processing Systems, J. Moody, S. Hanson, and R.P. Lippmann (Eds.), Vol. 4. Morgan-Kaufmann, Denver, Colorado, USA. https://proceedings.neurips.cc/paper_files/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
[35]
Rohit Kumar, Sneha Manjunath Naik, Vani D Naik, Smita Shiralli, Sunil V.G, and Moula Husain. 2015. Predicting clicks: CTR estimation of advertisements using Logistic Regression classifier. In 2015 IEEE International Advance Computing Conference (IACC). IEEE, Bangalore, India, 1134–1138. https://doi.org/10.1109/IADCC.2015.7154880
[36]
Hao Li, Huichuan Duan, Yuanjie Zheng, Qianqian Wang, and Yu Wang. 2020. A CTR prediction model based on user interest via attention mechanism. Appl. Intell. 50, 4 (2020), 1192–1203. https://doi.org/10.1007/S10489-019-01571-9
[37]
Pengcheng Li, Runze Li, Qing Da, Anxiang Zeng, and Lijun Zhang. 2020. Improving Multi-Scenario Learning to Rank in E-commerce by Exploiting Task Relationships in the Label Space. In CIKM ’20: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, October 19-23, 2020, Mathieu d’Aquin, Stefan Dietze, Claudia Hauff, Edward Curry, and Philippe Cudré-Mauroux (Eds.). ACM, Virtual Event, Ireland, 2605–2612. https://doi.org/10.1145/3340531.3412713
[38]
Xiangyang Li, Bo Chen, Huifeng Guo, Jingjie Li, Chenxu Zhu, Xiang Long, Sujian Li, Yichao Wang, Wei Guo, Longxia Mao, Jinxing Liu, Zhenhua Dong, and Ruiming Tang. 2022. IntTower: The Next Generation of Two-Tower Model for Pre-Ranking System. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, GA, USA, October 17-21, 2022, Mohammad Al Hasan and Li Xiong (Eds.). ACM, Atlanta, GA, USA, 3292–3301. https://doi.org/10.1145/3511808.3557072
[39]
Xiangyang Li, Bo Chen, Lu Hou, and Ruiming Tang. 2023. CTRL: Connect Collaborative and Language Model for CTR Prediction. arXiv:2306.02841 [cs.IR]
[40]
Xiaopeng Li, Fan Yan, Xiangyu Zhao, Yichao Wang, Bo Chen, Huifeng Guo, and Ruiming Tang. 2023. HAMUR: Hyper Adapter for Multi-Domain Recommendation. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, CIKM 2023, Birmingham, United Kingdom, October 21-25, 2023, Ingo Frommholz, Frank Hopfgartner, Mark Lee, Michael Oakes, Mounia Lalmas, Min Zhang, and Rodrygo L. T. Santos (Eds.). ACM, Birmingham, United Kingdom, 1268–1277. https://doi.org/10.1145/3583780.3615137
[41]
Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun. 2018. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018, Yike Guo and Faisal Farooq (Eds.). ACM, London, UK, 1754–1763. https://doi.org/10.1145/3219819.3220023
[42]
Qiang Liu, Feng Yu, Shu Wu, and Liang Wang. 2015. A Convolutional Click Prediction Model. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management (Melbourne, Australia) (CIKM ’15). Association for Computing Machinery, New York, NY, USA, 1743–1746. https://doi.org/10.1145/2806416.2806603
[43]
Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692 [cs.CL]
[44]
Yuhao Luo, Shiwei Ma, Mingjun Nie, Changping Peng, Zhangang Lin, Jingping Shao, and Qianfang Xu. 2024. Domain-Aware Cross-Attention for Cross-domain Recommendation. arXiv:2401.11705 [cs.IR]
[45]
Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H. Chi. 2018. Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018, Yike Guo and Faisal Farooq (Eds.). ACM, London, UK, 1930–1939. https://doi.org/10.1145/3219819.3220007
[46]
Xiao Ma, Liqin Zhao, Guan Huang, Zhi Wang, Zelin Hu, Xiaoqiang Zhu, and Kun Gai. 2018. Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018, Kevyn Collins-Thompson, Qiaozhu Mei, Brian D. Davison, Yiqun Liu, and Emine Yilmaz (Eds.). ACM, Ann Arbor, MI, USA, 1137–1140. https://doi.org/10.1145/3209978.3210104
[47]
Tong Man, Huawei Shen, Xiaolong Jin, and Xueqi Cheng. 2017. Cross-Domain Recommendation: An Embedding and Mapping Approach. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, Carles Sierra (Ed.). ijcai.org, Melbourne, Australia, 2464–2470. https://doi.org/10.24963/IJCAI.2017/343
[48]
Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. 2014. Recurrent Models of Visual Attention. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger (Eds.). Montreal, Quebec, Canada, 2204–2212. https://proceedings.neurips.cc/paper/2014/hash/09c6c3783b4a70054da74f2538ed47c6-Abstract.html
[49]
Aashiq Muhamed, Iman Keivanloo, Sujan Perera, James Mracek, Yi Xu, Qingjun Cui, Santosh Rajagopalan, Belinda Zeng, and Trishul Chilimbi. 2021. CTR-BERT: Cost-effective knowledge distillation for billion-parameter teacher models. In NeurIPS Efficient Natural Language and Speech Processing Workshop.
[50]
Aashiq Muhamed, Jaspreet Singh, Shuai Zheng, Iman Keivanloo, Sujan Perera, James Mracek, Yi Xu, Qingjun Cui, Santosh Rajagopalan, Belinda Zeng, and Trishul Chilimbi. 2022. DCAF-BERT: A Distilled Cachable Adaptable Factorized Model For Improved Ads CTR Prediction. In Companion Proceedings of the Web Conference 2022 (Virtual Event, Lyon, France) (WWW ’22). Association for Computing Machinery, New York, NY, USA, 110–115. https://doi.org/10.1145/3487553.3524206
[51]
Fionn Murtagh. 1990. Multilayer perceptrons for classification and regression. Neurocomputing 2, 5 (1990), 183–197. https://doi.org/10.1016/0925-2312(91)90023-5
[52]
Jianmo Ni, Jiacheng Li, and Julian J. McAuley. 2019. Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (Eds.). Association for Computational Linguistics, Hong Kong, China, 188–197. https://doi.org/10.18653/V1/D19-1018
[53]
XiPeng Qiu, TianXiang Sun, YiGe Xu, YunFan Shao, Ning Dai, and XuanJing Huang. 2020. Pre-trained models for natural language processing: A survey. Science China Technological Sciences 63, 10 (2020), 1872–1897. https://doi.org/10.1007/s11431-020-1647-3
[54]
Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang. 2016. Product-Based Neural Networks for User Response Prediction. In IEEE 16th International Conference on Data Mining, ICDM 2016, December 12-15, 2016, Barcelona, Spain, Francesco Bonchi, Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, and Xindong Wu (Eds.). IEEE Computer Society, Barcelona, Spain, 1149–1154. https://doi.org/10.1109/ICDM.2016.0151
[55]
Steffen Rendle. 2010. Factorization Machines. In ICDM 2010, The 10th IEEE International Conference on Data Mining, Sydney, Australia, 14-17 December 2010, Geoffrey I. Webb, Bing Liu, Chengqi Zhang, Dimitrios Gunopulos, and Xindong Wu (Eds.). IEEE Computer Society, Sydney, Australia, 995–1000. https://doi.org/10.1109/ICDM.2010.127
[56]
Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI 2009, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, June 18-21, 2009, Jeff A. Bilmes and Andrew Y. Ng (Eds.). AUAI Press, 452–461. https://www.auai.org/uai2009/papers/UAI2009_0139_48141db02b9f0b02bc7158819ebfa2c7.pdf
[57]
Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting clicks: estimating the click-through rate for new ads. In Proceedings of the 16th International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, Carey L. Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J. Shenoy (Eds.). ACM, Banff, Alberta, Canada, 521–530. https://doi.org/10.1145/1242572.1242643
[58]
Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2021. A primer in BERTology: What we know about how BERT works. Transactions of the Association for Computational Linguistics 8 (2021), 842–866.
[59]
Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. 2001. Item-based collaborative filtering recommendation algorithms. In Proceedings of the Tenth International World Wide Web Conference, WWW 10, Hong Kong, China, May 1-5, 2001, Vincent Y. Shen, Nobuo Saito, Michael R. Lyu, and Mary Ellen Zurko (Eds.). ACM, 285–295. https://doi.org/10.1145/371920.372071
[60]
Qijie Shen, Wanjie Tao, Jing Zhang, Hong Wen, Zulong Chen, and Quan Lu. 2021. SAR-Net: A Scenario-Aware Ranking Network for Personalized Fair Recommendation in Hundreds of Travel Scenarios. In CIKM ’21: The 30th ACM International Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021, Gianluca Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang Tong (Eds.). ACM, Virtual Event, Queensland, Australia, 4094–4103. https://doi.org/10.1145/3459637.3481948
[61]
Xiang-Rong Sheng, Liqin Zhao, Guorui Zhou, Xinyao Ding, Binding Dai, Qiang Luo, Siran Yang, Jingshan Lv, Chi Zhang, Hongbo Deng, and Xiaoqiang Zhu. 2021. One Model to Serve All: Star Topology Adaptive Recommender for Multi-Domain CTR Prediction. In CIKM ’21: The 30th ACM International Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021, Gianluca Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang Tong (Eds.). ACM, Queensland, Australia, 4104–4113. https://doi.org/10.1145/3459637.3481941
[62]
Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang. 2019. AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM 2019, Beijing, China, November 3-7, 2019, Wenwu Zhu, Dacheng Tao, Xueqi Cheng, Peng Cui, Elke A. Rundensteiner, David Carmel, Qi He, and Jeffrey Xu Yu (Eds.). ACM, Beijing, China, 1161–1170. https://doi.org/10.1145/3357384.3357925
[63]
Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang. 2019. AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM 2019, Beijing, China, November 3-7, 2019, Wenwu Zhu, Dacheng Tao, Xueqi Cheng, Peng Cui, Elke A. Rundensteiner, David Carmel, Qi He, and Jeffrey Xu Yu (Eds.). ACM, Beijing, China, 1161–1170. https://doi.org/10.1145/3357384.3357925
[64]
Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1 (2014), 1929–1958. https://doi.org/10.5555/2627435.2670313
[65]
Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022. LST: Ladder Side-Tuning for Parameter and Memory Efficient Transfer Learning. In Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (Eds.). New Orleans, LA, USA. http://papers.nips.cc/paper_files/paper/2022/hash/54801e196796134a2b0ae5e8adef502f-Abstract-Conference.html
[66]
Shulong Tan, Meifang Li, Weijie Zhao, Yandan Zheng, Xin Pei, and Ping Li. 2021. Multi-Task and Multi-Scene Unified Ranking Model for Online Advertising. In 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, December 15-18, 2021, Yixin Chen, Heiko Ludwig, Yicheng Tu, Usama M. Fayyad, Xingquan Zhu, Xiaohua Hu, Suren Byna, Xiong Liu, Jianping Zhang, Shirui Pan, Vagelis Papalexakis, Jianwu Wang, Alfredo Cuzzocrea, and Carlos Ordonez (Eds.). IEEE, Orlando, FL, USA, 2046–2051. https://doi.org/10.1109/BIGDATA52589.2021.9671920
[67]
Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. 2020. Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations. In RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, September 22-26, 2020, Rodrygo L. T. Santos, Leandro Balby Marinho, Elizabeth M. Daly, Li Chen, Kim Falk, Noam Koenigstein, and Edleno Silva de Moura (Eds.). ACM, London, UK, 269–278. https://doi.org/10.1145/3383313.3412236
[68]
Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_alpaca.
[69]
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models. arXiv:2302.13971 [cs.CL]
[70]
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models. arXiv:2302.13971 [cs.CL] https://arxiv.org/abs/2302.13971
[71]
Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using t-SNE. Journal of Machine Learning Research 9, 86 (2008), 2579–2605. http://jmlr.org/papers/v9/vandermaaten08a.html
[72]
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you Need. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). Curran Associates Inc., Long Beach, CA, USA, 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
[73]
Dong Wang, Kavé Salamatian, Yunqing Xia, Weiwei Deng, and Qi Zhang. 2023. BERT4CTR: An Efficient Framework to Combine Pre-trained Language Model with Non-textual Features for CTR Prediction. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023, Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (Eds.). ACM, Long Beach, CA, USA, 5039–5050. https://doi.org/10.1145/3580305.3599780
[74]
Hangyu Wang, Jianghao Lin, Xiangyang Li, Bo Chen, Chenxu Zhu, Ruiming Tang, Weinan Zhang, and Yong Yu. 2023. FLIP: Towards Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction. arXiv:2310.19453 [cs.IR]
[75]
Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & Cross Network for Ad Click Predictions. In Proceedings of the ADKDD’17, Halifax, NS, Canada, August 13 - 17, 2017. ACM, Halifax, NS, Canada, 12:1–12:7. https://doi.org/10.1145/3124749.3124754
[76]
Jian Wei, Jianhua He, Kai Chen, Yi Zhou, and Zuoyin Tang. 2017. Collaborative filtering and deep learning based recommendation system for cold start items. Expert Syst. Appl. 69 (2017), 29–39. https://doi.org/10.1016/J.ESWA.2016.09.040
[77]
Yunjia Xi, Weiwen Liu, Jianghao Lin, Xiaoling Cai, Hong Zhu, Jieming Zhu, Bo Chen, Ruiming Tang, Weinan Zhang, Rui Zhang, and Yong Yu. 2023. Towards Open-World Recommendation with Knowledge Augmentation from Large Language Models. arXiv:2306.10933 [cs.IR]
[78]
Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. 2023. Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning. arXiv:2310.06694 [cs.CL]
[79]
Jian Mou Xusen Cheng and Xiangbin Yan. 2021. Sharing economy enabled digital platforms for development. Information Technology for Development 27, 4 (2021), 635–644. https://doi.org/10.1080/02681102.2021.1971831 arXiv:https://doi.org/10.1080/02681102.2021.1971831
[80]
Ling Yan, Wu-Jun Li, Gui-Rong Xue, and Dingyi Han. 2014. Coupled Group Lasso for Web-Scale CTR Prediction in Display Advertising. In Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014 (JMLR Workshop and Conference Proceedings, Vol. 32). JMLR.org, Beijing, China, 802–810. http://proceedings.mlr.press/v32/yan14.html
[81]
Xuanhua Yang, Xiaoyu Peng, Penghui Wei, Shaoguo Liu, Liang Wang, and Bo Zheng. 2022. AdaSparse: Learning Adaptively Sparse Structures for Multi-Domain Click-Through Rate Prediction. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management, Atlanta, GA, USA, October 17-21, 2022, Mohammad Al Hasan and Li Xiong (Eds.). ACM, Atlanta, GA, USA, 4635–4639. https://doi.org/10.1145/3511808.3557541
[82]
Yanwu Yang and Panyu Zhai. 2022. Click-through rate prediction in online advertising: A literature review. Inf. Process. Manag. 59, 2 (2022), 102853. https://doi.org/10.1016/J.IPM.2021.102853
[83]
Qianqian Zhang, Xinru Liao, Quan Liu, Jian Xu, and Bo Zheng. 2022. Leaving No One Behind: A Multi-Scenario Multi-Task Meta Learning Approach for Advertiser Modeling. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining (Virtual Event, AZ, USA) (WSDM ’22). Association for Computing Machinery, New York, NY, USA, 1368–1376. https://doi.org/10.1145/3488560.3498479
[84]
Wei Zhang, Pengye Zhang, Bo Zhang, Xingxing Wang, and Dong Wang. 2023. A Collaborative Transfer Learning Framework for Cross-domain Recommendation. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023, Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (Eds.). ACM, Long Beach, CA, USA, 5576–5585. https://doi.org/10.1145/3580305.3599758
[85]
Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A Survey of Large Language Models. arXiv:2303.18223 [cs.CL]
[86]
Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun Gai. 2019. Deep Interest Evolution Network for Click-Through Rate Prediction. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press, Honolulu, Hawaii, USA, 5941–5948. https://doi.org/10.1609/AAAI.V33I01.33015941
[87]
Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for Click-Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018, Yike Guo and Faisal Farooq (Eds.). ACM, Beijing, China, 1059–1068. https://doi.org/10.1145/3219819.3219823
[88]
Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for Click-Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018, Yike Guo and Faisal Farooq (Eds.). ACM, London, UK, 1059–1068. https://doi.org/10.1145/3219819.3219823
[89]
Xinyu Zou, Zhi Hu, Yiming Zhao, Xuchu Ding, Zhongyi Liu, Chenliang Li, and Aixin Sun. 2022. Automatic Expert Selection for Multi-Scenario and Multi-Task Search. In SIGIR ’22: The 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, July 11 - 15, 2022, Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (Eds.). ACM, Madrid, Spain, 1535–1544. https://doi.org/10.1145/3477495.3531942

Cited By

View all
  • (2024)Spectral Clustering-Guided News Environments Perception for Fake News DetectionIEEE Access10.1109/ACCESS.2024.352101512(197529-197539)Online publication date: 2024
  • (2024)Large language models for generative information extraction: a surveyFrontiers of Computer Science10.1007/s11704-024-40555-y18:6Online publication date: 11-Nov-2024
  • (2024)Knowledge Graph for Solubility Big Data: Construction and ApplicationsWIREs Data Mining and Knowledge Discovery10.1002/widm.1570Online publication date: Nov-2024

Index Terms

  1. A Unified Framework for Multi-Domain CTR Prediction via Large Language Models

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Information Systems
      ACM Transactions on Information Systems Just Accepted
      EISSN:1558-2868
      Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Online AM: 14 October 2024
      Accepted: 24 September 2024
      Revised: 13 September 2024
      Received: 01 February 2024

      Check for updates

      Author Tags

      1. Click-Through Rate Prediction
      2. Multi-Domain Learning
      3. Large Language Model
      4. Recommender System

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)422
      • Downloads (Last 6 weeks)153
      Reflects downloads up to 26 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Spectral Clustering-Guided News Environments Perception for Fake News DetectionIEEE Access10.1109/ACCESS.2024.352101512(197529-197539)Online publication date: 2024
      • (2024)Large language models for generative information extraction: a surveyFrontiers of Computer Science10.1007/s11704-024-40555-y18:6Online publication date: 11-Nov-2024
      • (2024)Knowledge Graph for Solubility Big Data: Construction and ApplicationsWIREs Data Mining and Knowledge Discovery10.1002/widm.1570Online publication date: Nov-2024

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Full Access

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media