Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Barendregt Convenes with Knaster and Tarski: Strong Rule Induction for Syntax with Bindings

Published: 09 January 2025 Publication History

Abstract

This paper is a contribution to the meta-theory of systems featuring syntax with bindings, such as 𝜆-calculi and logics. It provides a general criterion that targets inductively defined rule-based systems, enabling for them inductive proofs that leverage Barendregt's variable convention of keeping the bound and free variables disjoint. It improves on the state of the art by (1) achieving high generality in the style of Knaster–Tarski fixed point definitions (as opposed to imposing syntactic formats), (2) capturing systems of interest without modifications, and (3) accommodating infinitary syntax and non-equivariant predicates.

References

[1]
2024. The HOL4 Theorem Prover. http://hol.sourceforge.net/
[2]
Andreas Abel, Alberto Momigliano, and Brigitte Pientka. 2017. POPLMark Reloaded. In Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP) 2017, Marino Miculan and Florian Rabe (Eds.). https://lfmtp.org/workshops/2017/inc/papers/paper_8_abel.pdf
[3]
Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna. 2018. A Type and Scope Safe Universe of Syntaxes with Binding: Their Semantics and Proofs. Proc. ACM Program. Lang., 2, International Conference on Functional Programming (ICFP) (2018), 90:1–90:30. http://doi.acm.org/10.1145/3236785
[4]
Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic. 2005. Mechanized Metatheory for the Masses: The PoplMark Challenge. In Theorem Proving in Higher Order Logics (TPHOLs) 2005, Joe Hurd and Thomas F. Melham (Eds.) (LNCS, Vol. 3603). Springer, 50–65. https://doi.org/10.1007/11541868_4
[5]
Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich. 2008. Engineering Formal Metatheory. In Principles of Programming Languages (POPL) 2008, George C. Necula and Philip Wadler (Eds.). ACM, 3–15. https://doi.org/10.1145/1328438.1328443
[6]
David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Nadathur, Alwen Tiu, and Yuting Wang. 2014. Abella: A System for Reasoning about Relational Specifications. J. Formalized Reasoning, 7, 2 (2014), 1–89. https://doi.org/10.6092/issn.1972-5787/4650
[7]
Clemens Ballarin. 2014. Locales: A Module System for Mathematical Theories. J. Autom. Reason., 52, 2 (2014), 123–153. https://doi.org/10.1007/s10817-013-9284-7
[8]
Henk Barendregt and Jan Willem Klop. 2009. Applications of infinitary lambda calculus. Inf. Comput., 207, 5 (2009), 559–582. https://doi.org/10.1016/J.IC.2008.09.003
[9]
Hendrik Pieter Barendregt. 1985. The lambda calculus - its syntax and semantics (Studies in logic and the foundations of mathematics, Vol. 103). North-Holland. isbn:978-0-444-86748-3
[10]
Jesper Bengtson. 2010. Formalising process calculi. Ph. D. Dissertation. Uppsala University, Sweden. http://www.itu.dk/people/jebe/files/thesis.pdf
[11]
Jesper Bengtson. 2012. The pi-calculus in nominal logic. Arch. Formal Proofs, 2012 (2012), https://www.isa-afp.org/entries/Pi_Calculus.shtml
[12]
Alessandro Berarducci and Mariangiola Dezani-Ciancaglini. 1999. Infinite lambda-Calculus and Types. Theor. Comput. Sci., 212, 1-2 (1999), 29–75. https://doi.org/10.1016/S0304-3975(98)00135-2
[13]
Stefan Berghofer and Christian Urban. 2006. A Head-to-Head Comparison of de Bruijn Indices and Names. In LFMTP 2006, Alberto Momigliano and Brigitte Pientka (Eds.) (ENTCS, Vol. 174). Elsevier, 53–67. https://doi.org/10.1016/j.entcs.2007.01.018
[14]
Jasmin Christian Blanchette, Lorenzo Gheri, Andrei Popescu, and Dmitriy Traytel. 2019. Bindings as bounded natural functors. Proc. ACM Program. Lang., 3, POPL (2019), 22:1–22:34. https://doi.org/10.1145/3290335
[15]
Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. 1994. An Extension of System F with Subtyping. Inf. Comput., 109, 1/2 (1994), 4–56. https://doi.org/10.1006/inco.1994.1013
[16]
Arthur Charguéraud. 2012. The Locally Nameless Representation. J. Autom. Reason., 49, 3 (2012), 363–408. https://doi.org/10.1007/s10817-011-9225-2
[17]
James Cheney. 2006. Completeness and Herbrand theorems for nominal logic. J. Symb. Log., 71, 1 (2006), 299–320. https://doi.org/10.2178/JSL/1140641176
[18]
Pierre-Louis Curien and Giorgio Ghelli. 1992. Coherence of Subsumption, Minimum Typing and Type-Checking in F_ < =. Math. Struct. Comput. Sci., 2, 1 (1992), 55–91. https://doi.org/10.1017/S0960129500001134
[19]
N. G. de Bruijn. 1972. Lambda Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church–Rosser Theorem. Indag. Math, 75, 5 (1972), 381–392. https://doi.org/10.1016/1385-7258(72)90034-0
[20]
M. Dickmann. 1985. Larger infinitary languages. In Handbook of Model Theoretic Logics. Springer-Verlag, 150–171.
[21]
Gilles Dowek and Murdoch James Gabbay. 2012. Permissive-nominal logic: First-order logic over nominal terms and sets. ACM Trans. Comput. Log., 13, 3 (2012), 20:1–20:36. https://doi.org/10.1145/2287718.2287720
[22]
Gilles Dowek and Murdoch James Gabbay. 2023. PNL to HOL: from the logic of nominal sets to the logic of higher-order functions. CoRR, abs/2312.16239 (2023), https://doi.org/10.48550/ARXIV.2312.16239 arXiv:2312.16239.
[23]
Gilles Dowek, Murdoch James Gabbay, and Dominic P. Mulligan. 2010. Permissive nominal terms and their unification: an infinite, co-infinite approach to nominal techniques. Log. J. IGPL, 18, 6 (2010), 769–822. https://doi.org/10.1093/JIGPAL/JZQ006
[24]
Amy P. Felty and Alberto Momigliano. 2012. Hybrid: A Definitional Two-Level Approach to Reasoning with Higher-Order Abstract Syntax. J. Autom. Reasoning, 48, 1 (2012), 43–105. https://doi.org/10.1007/s10817-010-9194-x
[25]
Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. 1999. Abstract Syntax and Variable Binding. In Logic in Computer Science (LICS) 1999. IEEE Computer Society, 193–202. https://doi.org/10.1109/LICS.1999.782615
[26]
Murdoch Gabbay. 2007. A general mathematics of names. Inf. Comput., 205, 7 (2007), 982–1011. https://doi.org/10.1016/J.IC.2006.10.010
[27]
Murdoch Gabbay and Andrew M. Pitts. 1999. A New Approach to Abstract Syntax Involving Binders. In 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999. IEEE Computer Society, 214–224. https://doi.org/10.1109/LICS.1999.782617
[28]
Murdoch Gabbay and Andrew M. Pitts. 2002. A New Approach to Abstract Syntax with Variable Binding. Formal Aspects Comput., 13, 3-5 (2002), 341–363. https://doi.org/10.1007/s001650200016
[29]
Lorenzo Gheri and Andrei Popescu. 2020. A Formalized General Theory of Syntax with Bindings: Extended Version. J. Autom. Reason., 64, 4 (2020), 641–675. https://doi.org/10.1007/S10817-019-09522-2
[30]
1993. Introduction to HOL: A Theorem Proving Environment for Higher Order Logic, M. J. C. Gordon and T. F. Melham (Eds.). Cambridge University Press.
[31]
William P. Hanf. 1964. Languages with Expressions of Infinite Length. Journal of Symbolic Logic, 33, 3 (1964), 477–478. https://doi.org/10.2307/2270356
[32]
Robert Harper, Furio Honsell, and Gordon D. Plotkin. 1987. A Framework for Defining Logics. In Logic in Computer Science (LICS) 1987. IEEE Computer Society, 194–204. https://doi.org/10.1145/138027.138060
[33]
John Harrison. 2024. The HOL Light Theorem Prover. http://www.cl.cam.ac.uk/ jrh13/hol-light/
[34]
Matthew Hennessy and Colin Stirling. 1985. The Power of the Future Perfect in Program Logics. Inf. Control., 67, 1-3 (1985), 23–52. https://doi.org/10.1016/S0019-9958(85)80025-5
[35]
Brian Huffman and Ondřej Kunčar. 2013. Lifting and Transfer: A Modular Design for Quotients in Isabelle/HOL. In Certified Programs and Proofs, Georges Gonthier and Michael Norrish (Eds.). Springer International Publishing, Cham. 131–146. isbn:978-3-319-03545-1 https://doi.org/10.1007/978-3-319-03545-1_9
[36]
Felix Joachimski. 2001. Reduction Properties of Π IE-Systems. Ph. D. Dissertation. LMU München.
[37]
Jonas Kaiser, Brigitte Pientka, and Gert Smolka. 2017. Relating System F and λ 2: A Case Study in Coq, Abella and Beluga. In Formal Structures for Computation and Deduction (FSCD) 2017, Dale Miller (Ed.) (LIPIcs, Vol. 84). Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, 21:1–21:19. https://doi.org/10.4230/LIPIcs.FSCD.2017.21
[38]
Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. 1999. Locales - A Sectioning Concept for Isabelle. In Theorem Proving in Higher Order Logics, 12th International Conference, TPHOLs’99, Yves Bertot, Gilles Dowek, André Hirschowitz, Christine Paulin-Mohring, and Laurent Théry (Eds.) (Lecture Notes in Computer Science, Vol. 1690). Springer, 149–166. https://doi.org/10.1007/3-540-48256-3_11
[39]
H. Jerome Keisler. 1971. Model Theory for Infinitary Logic. North-Holland Pub. Co., Amsterdam,.
[40]
B. Knaster. 1928. Un théorème sur les fonctions d’ensembles. Ann. Soc. Polon. Math., 6 (1928), 133–134.
[41]
Alexander Kurz, Daniela Petrişan, Paula Severi, and Fer-Jan de Vries. 2012. An Alpha-Corecursion Principle for the Infinitary Lambda Calculus. In Coalgebraic Methods in Computer Science (CMCS) 2012, Dirk Pattinson and Lutz Schröder (Eds.) (LNCS, Vol. 7399). Springer, 130–149. https://doi.org/10.1007/978-3-642-32784-1_8
[42]
Alexander Kurz, Daniela Petrişan, Paula Severi, and Fer-Jan de Vries. 2013. Nominal Coalgebraic Data Types with Applications to Lambda Calculus. Logical Methods in Computer Science, 9, 4 (2013), https://doi.org/10.2168/LMCS-9(4:20)2013
[43]
Jean-Jacques Lévy. 1975. An algebraic interpretation of the lambda beta - calculus and a labeled lambda - calculus. In Lambda-Calculus and Computer Science Theory, Proceedings of the Symposium Held in Rome, Italy, March 25-27, 1975, Corrado Böhm (Ed.) (Lecture Notes in Computer Science, Vol. 37). Springer, 147–165. https://doi.org/10.1007/BFb0029523
[44]
Michael Makkai. 1969. On the Model Theory of Denumerably Long Formulas with Finite Strings of Quantifiers. J. Symb. Log., 34, 3 (1969), 437–459. https://doi.org/10.2307/2270908
[45]
Michael Makkai and Robert Paré. 1989. Accessible Categories: The Foundations of Categorical Model Theory. Providence.
[46]
David Marker. 2016. Lectures on Infinitary Model Theory. Cambridge University Press, New York, NY, USA.
[47]
Damiano Mazza. 2012. An Infinitary Affine Lambda-Calculus Isomorphic to the Full Lambda-Calculus. In 2012 27th Annual IEEE Symposium on Logic in Computer Science. 471–480. https://doi.org/10.1109/LICS.2012.57
[48]
James McKinna and Robert Pollack. 1999. Some Lambda Calculus and Type Theory Formalized. J. Autom. Reason., 23, 3-4 (1999), 373–409.
[49]
Stefan Milius and Thorsten Wiß mann. 2015. Finitary Corecursion for the Infinitary Lambda Calculus. In 6th Conference on Algebra and Coalgebra in Computer Science, CALCO 2015, June 24-26, 2015, Nijmegen, The Netherlands, Lawrence S. Moss and Pawel Sobocinski (Eds.) (LIPIcs, Vol. 35). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 336–351. https://doi.org/10.4230/LIPICS.CALCO.2015.336
[50]
R. Milner. 1989. Communication and Concurrency. Prentice-Hall, Inc., USA. isbn:0131149849
[51]
Robin Milner. 1993. The Polyadic π -Calculus: a Tutorial. In Logic and Algebra of Specification, Friedrich L. Bauer, Wilfried Brauer, and Helmut Schwichtenberg (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 203–246. isbn:978-3-642-58041-3
[52]
Robin Milner. 1999. Communicating and Mobile Systems: The π -Calculus. Cambridge University Press.
[53]
Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of Mobile Processes, I/II. Inf. Comput., 100, 1 (1992), 1–77. https://doi.org/10.1016/0890-5401(92)90008-4
[54]
Tobias Nipkow, Lawrence C. Paulson, and Markarius Wenzel. 2002. Isabelle/HOL: a proof assistant for higher-order logic. 2283, Springer Science & Business Media.
[55]
Michael Norrish. 2004. Recursive Function Definition for Types with Binders. In Theorem Proving in Higher Order Logics (TPHOLs) 2004, Konrad Slind, Annette Bunker, and Ganesh Gopalakrishnan (Eds.) (LNCS, Vol. 3223). Springer, 241–256. https://doi.org/10.1007/978-3-540-30142-4_18
[56]
Michael Norrish. 2006. Mechanising lambda-calculus using a classical first order theory of terms with permutations. High. Order Symb. Comput., 19, 2-3 (2006), 169–195. https://doi.org/10.1007/S10990-006-8745-7
[57]
Michael Norrish and René Vestergaard. 2007. Proof Pearl: De Bruijn Terms Really Do Work. In Theorem Proving in Higher Order Logics, 20th International Conference, TPHOLs 2007, Proceedings, Klaus Schneider and Jens Brandt (Eds.) (Lecture Notes in Computer Science, Vol. 4732). Springer, 207–222. https://doi.org/10.1007/978-3-540-74591-4_16
[58]
Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. In Programming Language Design and Implementation (PLDI) 1988, Richard L. Wexelblat (Ed.). ACM, 199–208. https://doi.org/10.1145/53990.54010
[59]
Frank Pfenning and Carsten Schürmann. 1999. System Description: Twelf—A Meta-Logical Framework for Deductive Systems. In Conference on Automated Deduction (CADE) 1999, Harald Ganzinger (Ed.) (LNCS, Vol. 1632). Springer, 202–206. https://doi.org/10.1007/3-540-48660-7_14
[60]
Brigitte Pientka. 2010. Beluga: Programming with Dependent Types, Contextual Data, and Contexts. In Functional and Logic Programming (FLOPS) 2010, Matthias Blume, Naoki Kobayashi, and Germán Vidal (Eds.) (LNCS, Vol. 6009). Springer, 1–12. https://doi.org/10.1007/978-3-642-12251-4_1
[61]
Andrew M. Pitts. 2003. Nominal Logic, a First Order Theory of Names and Binding. Inf. Comput., 186, 2 (2003), 165–193. https://doi.org/10.1016/S0890-5401(03)00138-X
[62]
Andrew M. Pitts. 2006. Alpha-Structural Recursion and Induction. J. ACM, 53, 3 (2006), 459–506. https://doi.org/10.1145/1147954.1147961
[63]
Andrew M. Pitts. 2013. Nominal Sets: Names and Symmetry in Computer Science. Cambridge University Press. https://doi.org/10.1017/CBO9781139084673
[64]
Randy Pollack, Masahiko Sato, and Wilmer Ricciotti. 2012. A Canonical Locally Named Representation of Binding. J. Autom. Reason., 49, 2 (2012), 185–207. https://doi.org/10.1007/S10817-011-9229-Y
[65]
Andrei Popescu. 2024. Nominal Recursors as Epi-Recursors. Proc. ACM Program. Lang., 3, POPL (2024), 22:1–22:34. https://doi.org/10.1145/3290335
[66]
John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In IFIP Congress. 513–523.
[67]
Davide Sangiorgi and David Walker. 2001. The π -calculus. A theory of mobile processes. Cambridge.
[68]
Steven Schäfer, Tobias Tebbi, and Gert Smolka. 2015. Autosubst: Reasoning with de Bruijn Terms and Parallel Substitutions. In ITP 2015, Christian Urban and Xingyuan Zhang (Eds.) (LNCS, Vol. 9236). Springer, 359–374. https://doi.org/10.1007/978-3-319-22102-1_24
[69]
Masako Takahashi. 1995. Parallel Reductions in lambda-Calculus. Inf. Comput., 118, 1 (1995), 120–127. https://doi.org/10.1006/inco.1995.1057
[70]
Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math., 5 (1955), 285–309. https://api.semanticscholar.org/CorpusID:13651629
[71]
Christian Urban. 2008. Nominal Techniques in Isabelle/HOL. J. Autom. Reason., 40, 4 (2008), 327–356. https://doi.org/10.1007/S10817-008-9097-2
[72]
Christian Urban, Stefan Berghofer, and Michael Norrish. 2007. Barendregt’s Variable Convention in Rule Inductions. In Conference on Automated Deduction (CADE) 2007, Frank Pfenning (Ed.) (LNCS, Vol. 4603). Springer, 35–50. https://doi.org/10.1007/978-3-540-73595-3_4
[73]
Christian Urban and Cezary Kaliszyk. 2012. General Bindings and Alpha-Equivalence in Nominal Isabelle. Logical Methods in Computer Science, 8, 2 (2012), https://doi.org/10.2168/LMCS-8(2:14)2012
[74]
Christian Urban and Michael Norrish. 2005. A formal treatment of the Barendregt variable convention in rule inductions. In ACM SIGPLAN International Conference on Functional Programming, Workshop on Mechanized reasoning about languages with variable binding, MERLIN 2005, Randy Pollack (Ed.). ACM, 25–32. https://doi.org/10.1145/1088454.1088458
[75]
Christian Urban and Christine Tasson. 2005. Nominal Techniques in Isabelle/HOL. In CADE. 38–53.
[76]
Jan van Brügge, James McKinna, Andrei Popescu, and Dmitriy Traytel. 2025. Barendregt Convenes with Knaster and Tarski: Implementation and Mechanization Artifact. https://doi.org/10.5281/zenodo.14197983
[77]
Jan van Brügge, James McKinna, Andrei Popescu, and Dmitriy Traytel. 2025. Barendregt Convenes with Knaster and Tarski: Strong Rule Induction for Syntax with Bindings—Technical Report. https://doi.org/10.5281/zenodo.14198069
[78]
Philip Wadler. 1989. Theorems for Free!. In FPCA ’89. ACM, 347–359.

Cited By

View all
  • (2025)An Isabelle/HOL Framework for Synthetic Completeness ProofsProceedings of the 14th ACM SIGPLAN International Conference on Certified Programs and Proofs10.1145/3703595.3705882(171-186)Online publication date: 10-Jan-2025

Index Terms

  1. Barendregt Convenes with Knaster and Tarski: Strong Rule Induction for Syntax with Bindings

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the ACM on Programming Languages
    Proceedings of the ACM on Programming Languages  Volume 9, Issue POPL
    January 2025
    2363 pages
    EISSN:2475-1421
    DOI:10.1145/3554321
    Issue’s Table of Contents
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 09 January 2025
    Published in PACMPL Volume 9, Issue POPL

    Permissions

    Request permissions for this article.

    Check for updates

    Badges

    Author Tags

    1. formal reasoning
    2. induction
    3. nominal sets
    4. syntax with bindings

    Qualifiers

    • Research-article

    Funding Sources

    • EPSRC
    • Novo Nordisk Foundation
    • Independent Research Fund Denmark

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)135
    • Downloads (Last 6 weeks)135
    Reflects downloads up to 11 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)An Isabelle/HOL Framework for Synthetic Completeness ProofsProceedings of the 14th ACM SIGPLAN International Conference on Certified Programs and Proofs10.1145/3703595.3705882(171-186)Online publication date: 10-Jan-2025

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Full Access

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media