Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

Computer algebra in the life sciences

Published: 01 December 2002 Publication History

Abstract

This note (1) provides references to recent work that applies computer algebra (CA) to the life sciences, (2) cites literature that explains the biological background of each application, (3) states the mathematical methods that are used, (4) mentions the benefits of CA, and (5) suggests some topics for future work.

References

[1]
O. O. AALEN, Phase type distributions in survival analysis, Scand. J. Stat. 22 (4) 447--463, 1995.]]
[2]
O. O. AALEN, Phase type distributions: computer algebra and a simple mixing model, Technical report, Section of Medical Statistics, University of Oslo, 1999.]]
[3]
H. ANDERSSON AND T. BRITTON, Stochastic epidemic models and their statistical analysis, Lecture notes in statistics, 151, Springer, 2000.]]
[4]
D. ANDREWS, Asymptotic expansions of moments and cumulants, Stat. Comp. 11 (1) 7--16, 2001.]]
[5]
D. F. ANDREWS AND J. E. STAFFORD, Tools for the symbolic computation of asymptotic expansions, J. Roy. Stat. Soc. B 55 (3) 613--627, 1993.]]
[6]
D. F. ANDREWS AND J. E. STAFFORD, Iterated full partitions, Stat. Comp. 8 (3) 189--192, 1998.]]
[7]
D. F. ANDREWS AND J. E. STAFFORD, Symbolic computation for statistical inference, Oxford University Press, 2001.]]
[8]
P. ARMITAGE AND T. KOLTON, Encyclopedia of Biostatistics, 6 volumes, Wiley, 1998.]]
[9]
S. AUDOLY, L. D'ANGIÒ, M. P. SACCOMANI AND C. COBELLI, Global identifiability of linear compartmental models --- a computer algebra algorithm, IEEE Trans. Biomed. Eng. 45 (1) 36--47, 1998.]]
[10]
S. AUDOLY, G. BELLU, L. D'ANGIÒ, M. P. SACCOMANI AND C. COBELLI, Global identifiability of nonlinear models of biological systems, IEEE Trans. Biomed. Eng. 48 (1) 55--65, 2001.]]
[11]
J. BAGLIVO, M. PAGANO AND C. SPINO, Permutation distributions via generating functions with applications to sensitivity analysis of discrete data, J. Am. Stat. Assoc 91 (435) 1037--1046, 1996.]]
[12]
F. BALLOUX, H. BRÜNNER, N. LUGON-MOULIN, J. HAUSSER AND J. GOUDET, Microsatellites can be misleading: an empirical and simulation study, Evolution, 54 (4), 1414--1422, 2000.]]
[13]
M. P. BARNETT, The evaluation of molecular integrals by the zeta-function method, in B. ALDER, S. FERNBACH AND M. ROTENBERG, eds., Methods of Computational Physics, Academic Press, New York, vol 2, 95--153, 1963.]]
[14]
M. P. BARNETT, Molecular integrals over Slater orbitals, Chem. Phys. Letters 166 (1) 65--70, 1990.]]
[15]
M. P. BARNETT, Summing Pn(cosθ)/p(n) for certain polynomials p(n), Computers Math. Applic. 21 (10) 79--86, 1991.]]
[16]
M. P. BARNETT, Implicit rule formation in symbolic computation, Computers Math. Applic. 26 (1) 35--50, 1993.]]
[17]
M. P. BARNETT, Combining Mathematica and TeX, TUGboat, 19 (2) 147--158, 1998.]]
[18]
M. P. BARNETT, Symbolic calculation of auxiliary functions for molecular integrals over Slater orbitals, Int. J. Quantum Chem. 76 (3) 464--472, 2000.]]
[19]
M. P. BARNETT, Two-center non-exchange integrals over Slater orbitals, J. Chem. Phys. 113 (21) 9419--9428, 2000.]]
[20]
M. P. BARNETT, Digital erosion in the evaluation of molecular integrals, Theor. Chem. Accounts, 107 (4) 241--245, 2002.]]
[21]
M. P. BARNETT, Symbolic tabulation of overlap integrals over Slater orbitals, Theor. Chem. Accounts, in press, 2002.]]
[22]
M. P. BARNETT, T. DECKER AND W. KRANDICK, Power series expansion of the roots of a secular equation containing symbolic elements: computer algebra and Moseley's law, J. Chem. Phys. 114 (23) 10265--10269, 2001.]]
[23]
M. P. BARNETT AND K. R. PERRY, Hierarchical addressing in symbolic computation, Computers Math. Applic. 28 (8) 17--35, 1994.]]
[24]
M. P. BARNETT AND K. R. PERRY, Symbolic computation for electronic publishing, TUGboat, 15 (3 ) 285--292, 1994.]]
[25]
L. BARROSO, G. CORDEIRO AND K. VASCONCELLOS, Improved score tests for von Mises regression models, Commun. Stat.-Theory Methods 30 (7) 1295--1315, 2001.]]
[26]
M. BAYRAM, J. P. BENNETT AND M. C. DEWAR, Using computer algebra to determine rate constants in biochemistry, Acta Biotheoretica, 41 (1--2) 53--62, 1993.]]
[27]
M. BAYRAM, Automatic analysis of the control of metabolic networks, Comput. Biol. Med. 26 (5) 401--408, 1996.]]
[28]
M. BAYRAM, Automatic derivation of steady state rate laws using a computer algebra system, Proc. Indian Natl. Sci. Acad., A. 63 (3), 241--249, 1997.]]
[29]
E. D. BECKER, High resolutionNMR, theory and chemical applications, 3rd ed. Academic Press, 2000.]]
[30]
D. BELLHOUSE, R. PHILIPS AND J. STAFFORD, Symbolic operators for multiple sums, Comput. Stat. Data Anal 24 (4) 443--454, 1997.]]
[31]
R. BELLIO AND A. BRAZZALE, A computer algebra package for approximate conditional inference, Stat. Comput. 11 (1) 17--24, 2001.]]
[32]
J. P. BENNETT, J. H. DAVENPORT, M. C. DEWAR, D. L. FISHER, M. GRINFELD AND M. SAURO, Computer algebra approaches to enzyme kinetics, Lect. Notes in Cont. Inf. Sci. 165, 23--30, 1991.]]
[33]
J. P. BENNETT, M. GRINFELD AND J. HUBBLE, Computer algebra techniques in affinity binding equations: the dimer case, J. Symb. Comp. 15 (1) 79--83, 1993.]]
[34]
D. W. BLICK, J. M. A. BEER, W. D. KOSNICK, S. TROXEL, A. TOET, J. WALRAVEN AND W. MITCHELL, Laser glare in the cockpit: psychophysical estimates versus model predictions of veiling luminance distribution, App. Optics, 40 (10) 1715--1726, 2001.]]
[35]
S. F. BOYS, G. B. COOK, C. M. REEVES, AND I. SHAVITT, Automatic fundamental calculations of molecular structure, Nature (London), 178 (4544) 1207--1209, 1956.]]
[36]
V. A. BRUMBERG, Analytical techniques of celestial mechanics, Springer, 1995.]]
[37]
M. BULMERTheoretical evolutionary biology, Sinauer, 1994.]]
[38]
J. BURBEA AND J. DELCASTILLO, Geodesic submanifolds of statistical-models with location parameters, Comput. Stat. Data Anal 14 (3) 301--313, 1992.]]
[39]
D. E. BURMASTER, http://www.Alceon.com.]]
[40]
R. BUTLER, Reliabilities for feedback systems and their saddlepoint approximation, Stat. Sci 15 (3) 279--298, 2000.]]
[41]
O. H. CAMPANELLA AND M. PELEG, Theoretical comparison of a new and the traditional method to calculate Clostridium botulinum survival during thermal inactivation, J. Sci. Food Agric. 81 (11) 1969--1076, 2001.]]
[42]
E. R. CARSON, C. COBELLI AND L. FINKELSTEIN, The mathematical modeling of metabolic and endocrine systems, Wiley, 1983.]]
[43]
H. CASWELLMatrix population models: construction, analysis and interpretation, 2nd ed. Sinauer, 2001.]]
[44]
S.-M. CHANG AND M. D. RAUSHER, Frequency-dependent pollen discounting contributes to maintenance of a mixed mating system in the common Morning Glory Ipomoea purpurea, Am. Naturalist, 152 (5), 671--683, 1998.]]
[45]
M. J. CHAPPELL, K. R. GODFREY AND S. VAJDA, Global identifiability of the parameters of nonlinear systems with specified inputs: a comparison of methods, Math. Biosci. 102 (1) 41--73, 1990.]]
[46]
C. CHAUVIN, M. MÜLLER AND A. WEBER, An application of quantifier elimination to mathematical biology, in J. FLEISCHER, J. GRABMEIER, F. W. HEHL AND W. KÜCHLIN, eds. Computer Algebra in Science and Engineering, 287--298, World Scientific, 1995.]]
[47]
C. S. CHEN, M. MRKSICH, S. HUANG, G. WHITESIDES AND D. E. INGBER, Geometric control of cell life and death, Science, 276 (5317) 1425--1428, 1997.]]
[48]
G. CHRISTAKOS, Modern spatiotemporal geostatistics, Oxford University Press, 2000.]]
[49]
D. E. CLARK, Computational models for probabilistic decision trees, Comp. Biomed. Res. 30 (1) 19--33, 1997.]]
[50]
D. E. CLARK AND M. EL-TAHA, Generation of correlated logistic-normal random variates for medical decision trees, Methods Inf. Med. 37 (3) 235--238, 1998.]]
[51]
J. E. COHEN, Population-growth and the earth's human carrying-capacity, Science, 269, (5222) 341--348, 1995.]]
[52]
J. E. COHEN, M. LYNCH AND C. E. TAYLOR, ForensicDNAtests and Hardy-Weinberg equilibrium, Science, 253 (5023) 1037--1038, 1991.]]
[53]
G. E. COLLINS, M. J. ENCARNACION, H. HONG, J. R. JOHNSON., W. KRANDICK, A. M. MANDACHE, A. NEUBACHER, AND H. VIELHABER, SACLIBUser's Guide, Technical Report 93--19, RISC--Linz, Johannes Kepler University, Linz, Austria, 1993.]]
[54]
P. COOK AND L. BROEMLING, Bayesian statistics usingMATHEMATICA, Am. Stat. 49 (1) 70--76, 1995.]]
[55]
R. M. CORLESS, HIV and antiviral therapy, accessed from {242}.]]
[56]
C. J. CRAMER, Essentials of computational chemistry: theories and models, Wiley, (in press) 2002.]]
[57]
J. F. CROW AND M. KIMURA, An introduction to population genetics, Burgess, 1970.]]
[58]
A. C. CULLEN AND H. C. FREY, Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs, Plenum, 1999.]]
[59]
I. CURRIE, Maximum-likelihood-estimation andMATHEMATICA, Appl. Stat.-J. R. Stat. Soc 44 (3) 379--394, 1995.]]
[60]
S. CYGANOWSKI, AMAPLEpackage for stochastic differential equations, in R. L. MAY AND A. K. EASTON, eds. Proceedings of the seventh biennial computational techniques and applications conference: CTAC95, 223--230, World Scientific, 2006; download from {247}, page 2, item 2.]]
[61]
S. CYGANOWSKI, L. GRÜNE AND P. E. KLOEDEN, MAPLEfor stochastic differential equations, in J. F. BLOWEY, J. P. COLEMAN AND A. W. CRAIG eds. Theory and numerics of differential equations, 127--178, Springer, 2001; download from {247}, page 1, maplesde.pdf.]]
[62]
S. CYGANOWSKI, P. E. KLOEDEN AND J. OMBACH, From elementary probability to stochastic DEs withMAPLE, Springer, 2001.]]
[63]
A. DAVISON AND J. STAFFORD, The score function and a comparison of various adjustments of the profile likelihood, Can. J. Stat.-Rev. Can. Stat 26 (1) 139--148, 1998.]]
[64]
C. DENNISTON, Equivalence by descent, Ann. Hum. Genet. 64 (1) 61--82, 2000.]]
[65]
P. DIACONIS AND B. STURMFELS, Algebraic algorithms for sampling from conditional distributions, Annals Stat. 26 (1) 363--397, 1998.]]
[66]
A. DRESS AND W. TERHALLE, The tree of life and other affine buildings, Documenta Mathematica, extra vol. ICM (III) 565--574, and http://www.mathematik.uni-bielefeld.de/documenta/xvol-icm/16/16.html, 1998.]]
[67]
J. DREW, A. GLEN AND L. M. LEEMIS, Computing the cumulative distribution function of the Kolmogorov-Smirnov statistic, Comput. Stat. Data Anal 34 (1) 1--15, 2000.]]
[68]
L. EDELSTEIN-KESHET, Mathematical models in biology, McGraw-Hill, 1988.]]
[69]
I. Z. EMIRIS AND B. MOURRAIN, Computer algebra methods for studying and computing molecular conformations, Algorithmica, 25 (2--3) 372--402, 1999.]]
[70]
M. FARZA AND A. CHÉRUY, BIOESTIM: SOFTWARE FOR AUTOMATIC DESIGN OF ESTIMATORS IN BIOPROCESS ENGINEERING, Computer Applications in the Biosciences, 10 (5) 477--488, 1994.]]
[71]
J. FELSENSTEIN, Phylogeny programs, http://evolution.genetics.washington.edu/phylip/software.html.]]
[72]
P. W. FINN AND L. E. KAVRAKI, Computational approaches to drug design, Algorithmica, 25 (2--3) 347--371, 1999.]]
[73]
L. M. J. FLORACK, Image structure, Kluwer, Dordrecht, 1997.]]
[74]
W. B. FLORIANO, N. VAIDEHI, W. A. GODDARD III, M. S. SINGER, AND G. M. SHEPHERD, Molecular mechanisms underlying differential odor responses of a mouse olfactory receptor, Proc. Natl. Acad. Sci. 97 (20) 10712--10716, 2000.]]
[75]
P. FORWALTER-FRIEDMAN, Hopf bifurcation in a predator-prey model, accessed from {242}.]]
[76]
R. FREEMAN, Spin choreography: basic steps in high resolutionNMR, Oxford University Press, 1998.]]
[77]
O. D. FRIEDRICHS, A. W. M. DRESS, D. HUSON, J. KLINOWSKI AND A. L MACKAY, Systematic enumeration of crystalline networks, Nature, 400 (6745) 644--647, 1999.]]
[78]
D. J. GALAS, Making sense of the sequence, Science, 291 (5507) 1257--1260, 2001.]]
[79]
F. GARVAN, The Maple book, Chapman and Hall, London, 2001.]]
[80]
C. GASPAROVIC, M. CABAÑAS AND C. ARÚS, A simple approach to the design of a shielded gradient probe for high-resolution in vivo spectroscopy, J. Mag. Res. B 109 (2) 146--152, 1995.]]
[81]
J. VON ZUR GATHEN AND J. GERHARDT, Modern computer algebra, Cambridge University Press, 1999.]]
[82]
R. GATTO, Symbolic computation for approximating distributions of some families of one and two-sample nonparametric test statistics, Stat. Comp. 11 (1) 89--95, 2001.]]
[83]
R. GEIL, Determination of rate law for enzyme kinetics, accessed from {242}.]]
[84]
J. GITTINS AND H. PEZESHK, A behavioral Bayes method for determining the size of a clinical trial, Drug Inf. J. 34 (2) 355--363, 2000.]]
[85]
A. G. GLEN, L. M. LEEMIS AND D. R. BARR, Order statistics in goodness-of-fit testing, IEEE Trans. Reliability, 50 (2) 209--213, 2001.]]
[86]
A. G. GLEN, L. M. LEEMIS AND J. H. DREW, A generalized univariate change-of-variable transformation technique, INFORMS Journal on Computing, 9 (3) 288--295, 1997.]]
[87]
A. G. GLEN, L. M. LEEMIS AND D. L. EVANS, APPL: A probability programming language, Am. Stat 55 (2) 156--166, 2001.]]
[88]
N. GO AND H. A. SCHERAGA, Ring-closure and local conformation deformations of chain molecules with Cn, I or S2nsymmetry, Macromol. 6 (2), 273--281, 1973.]]
[89]
M. S. GOCKENBACH, A practical introduction toMATLAB, http://www.math.mtu.edu/msgocken/intro/intro.html.]]
[90]
A. GÓMEZ, J. L. ARAGÓN, O. CABALLERO AND F. DÁVILA, The application of Clifford algebras to crystallography usingMATHEMATICA, in R. ABLAMOWICZ, P. LOUNESTO AND J. M. PARRA, Clifford algebras with numeric and symbolic computations, 250--266, Birkhauser, 1996.]]
[91]
J. E. GOODMAN AND J. O'ROURKE (eds.) Handbook of discrete and computational geometry, CRC Press, 1997.]]
[92]
C. GOUTIS AND G. CASELLA, Explaining the saddlepoint approximation, Am. Stat. 53 (3) 216--224, 1999.]]
[93]
B. F. GRAY, H. O. PRITCHARD AND F. H. SUMNER, Hybridization in the ground state of the hydrogen molecule-ion, J. Chem. Soc. 2631--2635, 1956.]]
[94]
D. M. GREEN AND J. A. SWEETS, Signal detection theory and psychophysics, Kresge, New York, 1974.]]
[95]
G.-M. GREUEL, Computer algebra and algebraic geometry --- achievements and perspectives, J. Symb. Comp. 30 (3) 253--289, 2000.]]
[96]
G.-M. GREUEL, G. PFISTER AND H. SCHÖNEMANN, SINGULAR2.0. A computer algebra system for polynomial computations, Centre for Computer Algebra, University of Kaiserslautern, http://www.singular.uni-kl.de, 2001.]]
[97]
M. GRINFELD, J. BENNETT AND J. HUBBLE, Application of computer algebra techniques to affinity binding equations, IAM J. Math. App. Bus. Ind. 8, 157--166, 1997.]]
[98]
J. GROTENDORST, P. JANSEN AND S. M. SCHOBERTH, The McConnell equations in biochemistry, accessed from {242}.]]
[99]
J. GROTENDORST, P. JANSEN AND S. M. SCHOBERTH, On solving the McConnell equations in biochemistry, MAPLE Technical Newsletter, 1, 55--62, 1994.]]
[100]
S. GUPTA, R. M. ANDERSON AND R. M. MAY, Mathematical models and the design of public-health policy --- HIVand antiviral therapy, SIAM Rev. 35 (1) 1--16, 1993.]]
[101]
J. M. HAILE, Molecular dynamics simulation: elementary methods, Wiley, 1997.]]
[102]
N. C. HANDY, S. CARTER AND S. M. COLWELL, The vibrational energy levels of ammonia, Mol. Phys. 96 (4) 477--491, 1999.]]
[103]
I. HANSKI, Metapopulation Ecology, Oxford University Press, 1999.]]
[104]
J. L. HARVILL AND H. J. NEWTON, Saddlepoint approximations for the difference of order statistics, Biometrika, 82 (1) 226--231, 1995.]]
[105]
J. L. HARVILL AND H. J. NEWTON, Using symbolic math to evaluate saddlepoint approximations for the difference of order statistics, Comm. Stat.-Simul. Comp. 24 (3) 781--791, 1995.]]
[106]
X. HE, D. KU AND J. E. MOORE, Simple calculation of the velocity profiles for pulsatile flow in a blood vessel usingMATHEMATICA, Ann. Biomed. Eng. 21 (1) 45--49, 1993.]]
[107]
A. C. HEARN, REDUCEuser's manual, version 3.6, RAND Corporation, Santa Monica, CA, 1995.]]
[108]
P. S. HECKERLING, Parametric three-way receiver operating characteristic surface analysis usingMATHEMATICA, Med. Dec. Making. 21 (5) 409--417, 2001.]]
[109]
B. HELLER, MACSYMAfor statisticians, Wiley, 1991.]]
[110]
C. M. HENRY, Careers in bioinformatics, Chemical and Engineering News, 80, 47--53, 2002.]]
[111]
http://www.math.gatech.edu/herod/MathBio/textcode.html.]]
[112]
D. W. HOSNER AND S. LEMESHOW, Applied Logistic Regression, Wiley, 1989.]]
[113]
F. W. HUFFER AND C.-T. LIN, Computing the exact distribution of the extremes of sums of consecutive spacings, Comput. Stat. Data Analysis, 26 (2) 117--132, 1997.]]
[114]
F. W. HUFFER AND C.-T. LIN, Computing the joint distribution of general linear combinations of spacings or exponential variates, Stat. Sinica 11 (4) 1141--1157, 2001.]]
[115]
R. HUGGINS, On the identifiability of measurement error in the bifurcating autoregressive model, Stat. Probab. Lett. 27 (1) 17--23, 1996.]]
[116]
S. HUNKA, Identifying regions of significance inANCOVAproblems having nonhomogeneous regressions, Br. J. Math. Stat. Psychol. 48 (1) 161--188, 1995.]]
[117]
S. HUNKA AND J. LEIGHTON, Defining Johnson-Neyman regions of significance in the three- covariateANCOVAusingMATHEMATICA, J. Educ. Behav. Stat. 22 (4) 361--387, 1997.]]
[118]
K. ITÔ AND N. SŪGAKKAI, Encyclopedic dictionary of mathematics, 2 volumes, MIT Press, 1993.]]
[119]
J. A. JACQUEZ, Compartmental analysis in biology and medicine, BioMedware, Ann Arbor, 1996.]]
[120]
R. D. JENKS AND R S SUTOR, AXIOM: the scientific computation system, Springer, 1992.]]
[121]
F. JENSEN, Introduction to computational chemistry, Wiley, 1999.]]
[122]
M. S. JU AND J. M. MANSOUR, Simulation of the double limb support phase of human gait, J. Biomech. Eng. 110 (3) 223--9, 1998.]]
[123]
P. A. JUMARS, Animal guts as ideal chemical reactors: maximizing absorption rates, Am. Naturalist, 155 (4) 528--543, 2000.]]
[124]
A. C. KAK AND M. SLANEY, Principles of Computerized Tomographic Imaging, www.slaney.org/pct/pct-toc.html, SIAM, 2001.]]
[125]
R. KEMP-HARPER, D. J. PHILP AND P. W. KUCHEL, Nuclear magnetic resonance of J-coupled quadrupolar nuclei: use of the tensor operator basis, J. Chem. Phys. 115 (7) 2908--2916, 2001.]]
[126]
M. G. KENDALL, Advanced theory of statistics, 6th ed.A. STUART AND J. K. ORD. eds. Halsted Press, New York, 1994.]]
[127]
W. S. KENDALL, Computer algebra in probability and statistics, Statistica Neerlandica, 47, 9--25, 1993.]]
[128]
W. S. KENDALL, Computer algebra, in {8}.]]
[129]
W. S. KENDALL, Symbolic Itô calculus inAXIOM: an ongoing story, Stat. Comp. 11 (1) 25--35, 2001.]]
[130]
C. KENNEDY AND W. LENNOX, Solution to the practical problem of moments using non-classical orthogonal polynomials, with applications for probabilistic analysis, Probab. Eng. Eng. Mech 15 (4) 371--379, 2000.]]
[131]
M. KIRKPATRICK, Good genes and direct selection in the evolution of mating preferences, Evolution, 50 (6), 2125--2140, 1996.]]
[132]
M. KIRKPATRICK, W. G. HILL AND R. THOMPSON, Estimating the covariance structure of traits during growth and ageing, illustrated with lactation in dairy cattle, Genet. Res. (Camb.) 64 (1) 57--69, 1994.]]
[133]
M. KIRKPATRICK AND M. R. SERVEDIO, The reinforcement of mating preferences on an island, Genetics, 151 (2) 865--884, 1999.]]
[134]
S. J. KLEENE AND H. C. CEJTIN, Solving buffering problems with Mathematica software, Analytical Biochem. 222 (2) 310--314, 1994.]]
[135]
P. E. KLOEDEN AND E. PLATENNumerical solution of stochastic differential equations, Springer, 1992.]]
[136]
J. E. KOLASSA, Series approximation methods in statistics, 2nd ed., Springer, 1997.]]
[137]
J. E. KOLASSA, Bounding convergence rates for Markov chains: An example of the use of computer algebra, Stat. Comp. 11 (1) 83--87, 2001.]]
[138]
J. E. KOLASSA, Approximate multivariate conditional inference using the adjusted profile likelihood, Can. J. Stat. submitted, 2002.]]
[139]
M. KOT, Elements of mathematical ecology, Cambridge University Press, 2001.]]
[140]
S. KOTZ AND N. L. JOHNSON, eds., Encyclopedia of Statistical Sciences, 9 volumes, Wiley, 1988.]]
[141]
P. W. KUCHEL AND C. J. DURRANT, Permeability coefficients fromNMRq-space data: models with unevenly spaced semi-permeable parallel membranes, J. Mag. Res. 139 (2) 258--272, 1999.]]
[142]
P. W. KUCHEL AND E. F. FACKERELL, Parametric-equation representation of biconcave erythrocytes, Bull. Math. Bio. 61 (2) 209--220, 1999.]]
[143]
P. W. KUCHEL, A. L. LENNON AND C. J. DURRANT, Analytical solutions and simulations for spin-echo measurements of diffusion of spins in a sphere with surface and bulk relaxation, J. Mag. Res. B 112 (1) 1--17, 1996.]]
[144]
K. LANGE, Mathematical and statistical methods for genetic analysis, Springer, 1997.]]
[145]
C. T. LE, Applied Survival Analysis, Wiley, 1997.]]
[146]
M. H. LEVITT, Spin dynamics: basic principles ofNMRspectroscopy, Wiley, 2001.]]
[147]
T. LINDEBERG, Scale-space theory in computer vision, Kluwer, Dordrecht, 1994.]]
[148]
L. LJUNG AND T. GLAD, On global identifiability for arbitrary model parameterization, Automatica, 30 (2) 265--276, 1994.]]
[149]
A. LOURENS AND C. SMIT, Symbolic computation used to solve a Markov chain-based problem in statistical distribution theory, South Afr. Stat. J 33 (1) 71--93, 1999.]]
[150]
M. LYNCH AND B. WALSH, Genetics and analysis of quantitative traits, Sinauer, 1998.]]
[151]
R. H. MACARTHUR, Geographical ecology, 35--58, Harper and Row, 1972.]]
[152]
D. MANOCHA AND Y. ZHU, Kinematic manipulation of molecular chains subect to rigid constraints, Proceedings of the 2nd International Conference on Molecular Biology, 285--194, 1994.]]
[153]
D. MANOCHA, Y. ZHU AND W. WRIGHT, Conformational analysis of molecular chains using nano-kinematics, Computer application of biological sciences (CABIOS), 11 (1) 71--86, 1995.]]
[154]
G. MARGARIA, E. RICCOMAGNO, M. C. CHAPPELL AND H. P. WYNN, Differential algebra methods for the study of the structural identifiability of state-space models in the biosciences, Math. Biosci. 174 (1) 1--26, 2001.]]
[155]
J. H. MATIS AND T. R. KIFF, Stochastic population models --- a compartmental perspective, Springer, 1999.]]
[156]
R. M. MAY, Biological populations with nonoverlapping generations: stable points, stable cycles and chaos, Science, 186 (4164) 645--647, 1974.]]
[157]
R. M. MAY AND G. F. OSTER, Bifurcations and dynamic complexity in simple ecological models Am. Naturalist, 110 (974) 573--579, 1976.]]
[158]
J. MAYNARD SMITH, Evolution and the theory of games, Cambridge University Press, 1982.]]
[159]
J. P. MAZAT, R. OUHABI, M. RIGOULET AND S. SCHUSTER, Modern trends in biothermokinetics, Kluwer Academic, 1994.]]
[160]
J. MCDONALD, D. DEROURE AND D. MICHAELIDES, Exact tests for two-way symmetric contingency tables, Stat. Comp. 8 (4) 391--399, 1998.]]
[161]
A. MCLEOD AND B. QUENNEVILLE, Mean likelihood estimators, Stat. Comp. 11 (1) 57--65, 2001.]]
[162]
S. M. MEGAHED, Automatic algebraic computation of basic kinematic equations of tree structure robot arms: application to human arms, Proc. Inst. Mech. Eng. H, J. Eng. Med. 205 (3) 135--43, 1991.]]
[163]
G. MEGYESI, F. SOTTILE AND T. THEOBALD, Common transversals and tangents to two lines and two quadrics in P3, arXiv:math.AG/0206044, v1, 2002.]]
[164]
M. MILLER AND D. S. WETHEY, Biological populations and ecological models, accessed from {242}.]]
[165]
M. MILLER AND D. S. WETHEY, Competition models, accessed from {242}.]]
[166]
M. MILLER AND D. S. WETHEY, The dynamics of arthropod predator-prey systems, accessed from {242}.]]
[167]
M. MILLER AND D. S. WETHEY, Evolutionarily stable strategies, accessed from {242}.]]
[168]
M. MILLER AND D. S. WETHEY, Graphical analysis of the chemostat system, accessed from {242}.]]
[169]
M. MILLER AND D. S. WETHEY, Population growth and the earth's human carrying capacity, accessed from {242}.]]
[170]
M. MILLER AND D. S. WETHEY, Predator-prey models, accessed from {242}.]]
[171]
M. MILLER AND D. S. WETHEY, r- and K-selection, accessed from http://marine.geol.sc.edu/BIOL/Courses/BIOL765/f96/RK.html.]]
[172]
J. E. MOORE, N. GUGGENHEIM, A. DELFINO, P.-A. DORIOT, P.-A. DORSAZ, W. RUTISHAUSER AND J.-J. MEISTER, Preliminary analysis of the effects of blood flow patterns in the coronary arteries, J. Biomech. Eng. 116 (3) 302--306, 1994.]]
[173]
P. J. MULQUINNEY AND P. W. KUCHEL, Model of 2, 3-biphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement, Biochem. J. 342 (3) 581--596, 1999.]]
[174]
A. MURRAY, J. WATKINS AND D. BONE, A biological acoustic survey in the marginal ice-edge zone of the Bellinghausen Sea, Deep-Sea Res. II -Top. Stud. Oceanog. 42 (4--5) 1159--1175, 1995.]]
[175]
J. D. MURRAY, Mathematical Biology, 2nd ed. Springer, 1998.]]
[176]
R. M. MURRAY, Z. LI AND S. S. SASTRY, A mathematical introduction to robotic manipulation, CRC Press, Boca Raton, 1994.]]
[177]
J. K. NICHOLSON, J. CONNELLY, J. C. LINDON AND E. HOLMES, Metabonomics: a platform for studying drug toxicity and gene function, Nature Reviews/Drug Discovery, 1 (2) 153--162, 2002.]]
[178]
G. PARMIGIANI, Modeling in medical decision making: a Bayesian approach, Wiley, 2002.]]
[179]
J. PECCOUD AND B. YCART, Markovian modeling of gene-product synthesis, Theo. Pop. Bio. 48 (2) 222--234, 1995.]]
[180]
G. PECELLI, Prey-predator systems with delay: Hopf bifurcation and stable oscillations, Math. Comp. Model. 25 (10) 77--98, 1997.]]
[181]
R. PÉREZ -OCÓN, J. E. RUIZ-CASTRO AND M. L. GÀMIZ -PÉREZ, A multi-variate model to measure the effect of treatments in survival to breast cancer, Biomet. J. 40 (6) 703--715, 1998.]]
[182]
R. PÉREZ -OCÓN, J. E. RUIZ-CASTRO AND M. L. GÀMIZ-PÉREZ, Non-homogeneous Markov models in the analysis of survival after breast cancer, Appl. Stat. 50 (1), 111--124, 2001.]]
[183]
S. PETITJEAN, Algebraic geometry and computer vision: polynomial systems, real and complex roots, J. Math. Imaging Vis. 10 (3) 191--220, 1999.]]
[184]
G. PISTONE, E. RICCOMAGNO, H. P. WYNN, Algebraic statistics: computational commutative algebra in statistics, CRC Press, Boca Raton, 2001.]]
[185]
H. O. PRITCHARD, Computational chemistry in the 1950s, J. Mol. Graphics Mod. 19 (6) 623--627, 2001.]]
[186]
K. L. QUEENEY, E. P. MARIN, C. M. CAMPBELL AND E. PEACOCK-LOPEZ, Chemical oscillations in enzyme kinetics, Chem. Educ. {Electronic Publication} 1 (3), 1996.]]
[187]
A. RAKSANYI, Y. LECOURTIER, E. WALTER AND A. VENOT, Identifiability and distinguishability testing via computer algebra, Math. Bisosci. 77 (1--2) 245, 1985.]]
[188]
T. R. REBBECK, E. L. LUSTBADER AND K. H. BUTOW, Somatic allele loss in genetic linkage analysis of cancer, Genetic Epidem. 11 (5) 419--429, 1994.]]
[189]
B. M. TER HAAR ROMENY, ed. Geometry-driven diffusion in computer vision, Kluwer, Dordrecht, 1994.]]
[190]
B. M. TER HAAR ROMENY, Computer vision and Mathematica 4, Comp. Vis. Sci. in press, 2002.]]
[191]
E. RONCHETTI AND L. VENTURA, Between stability and higher-order asymptotics, Stat. Comp. 11 (1) 67--73, 2001.]]
[192]
C. ROSE AND M. D. SMITH, Symbolic maximum likelihood estimation withMATHEMATICA, J. Roy. Stat. Soc. Series D, 49 (2) 229--240, 2000.]]
[193]
C. ROSE AND M. D. SMITH, Mathematical Statistics withMATHEMATICA, Springer, 2002.]]
[194]
J. ROUGHGARDEN, Theory of Population Genetics and Evolutionary Ecology, MacMillan, London, 1979.]]
[195]
J. F. SADOC AND N. RIVIER, Boerdijk-Coxeter helix and biological helices as quasicrystals, Mat. Sci. Eng. A --- Struct. 294 (Sp. Iss. Dec. 15) 397--400, 2000.]]
[196]
A. R. SCHULZ AND J. SÜDI, Control analysis of single enzyme sequences with abortive complexes and random substrate binding, J. Theor. Biol. 182 (3) 397--403, 1996.]]
[197]
D. SCHWALBE, The logistic model of population growth, accessed from {242}.]]
[198]
B. SCOTT, MAPLEfor environmental sciences: a helping hand, Springer, 2001.]]
[199]
M. SENECHAL, Crystals and quasicrystals in {91} 933--949.]]
[200]
B. SMITH AND C. FIELD, Symbolic cumulant calculations for frequency domain time series, Stat. Comp. 11 (1) 75--82, 2001.]]
[201]
J. STAFFORD, Using intersection matrices to identify graphical structure, Stat. Comp. 11 (1) 47--55, 2001.]]
[202]
J. E. STAFFORD AND D. F. ANDREWS, A symbolic algorithm for studying adjustments to the profile likelihood, Biometrika, 80 (4) 715--730, 1993.]]
[203]
J. E. STAFFORD, D. F. ANDREWS AND Y. WANG, Symbolic computation --- a unified approach to studying likelihood, Stat. Comp. 4 (4) 235--245, 1994.]]
[204]
M. STAMPANONI, M. FIX, P. FRANÇOIS AND P. RÜEGSEGGER, Computer algebra for spectral reconstruction between 6 and 25 mev, Med. Phys. 28 (3) 325--327, 2001.]]
[205]
K. STRAUBINGER, F. SCHICK AND O. LUTZ, Pulse angle dependence of double-spin-echo protonNMRspectra of citrate --- theory and experiments, J. Mag. Res. B 110 (2) 188--194, 1996.]]
[206]
E. A. TANIS AND Z. A. KARIAN, Probability and statistics: explorations withMAPLE, 2nd ed. Prentice-Hall, 1999.]]
[207]
S. TAVARÉ, Calibrating the clock: using stochastic processes to measure the rate of evolution, in E. S. LANDER AND M. S. WATERMAN, eds., Calculating the secrets of life, National Academy Press, 1995.]]
[208]
T. THEOBALD, Visibility computations: from discrete algorithms to real algebraic geometry, DIMACS Series in Discrete Math. Theor. Comp. Sci. in press (2002).]]
[209]
G. L. TIETJEN, A topical dictionary of statistics, Chapman and Hall, 1986.]]
[210]
M. TURELLI AND N. H. BARTON, Genetic and statistical analyses of strong selection on polygenic traits: what, me normal? Genetics, 138 (3) 913--941, 1994.]]
[211]
W. V. VASCONCELOS, Computational methods in commutative algebra and algebraic geometry, Springer, 1998.]]
[212]
J. A. M. VERMASEREN, How Useful isFORM? J. FLEISCHER, J. GRABMEIER, F. W. HEHL AND W. KÜCHLIN, eds. Computer Algebra in Science and Engineering, 67--76, World Scientific, 1995.]]
[213]
S. V. VISCIDO, M. MILLER AND D. S. WETHEY, The response of a selfish herd to an attack from outside the group perimeter, J. Theor. Biol. 208 (3) 315--328, 2001.]]
[214]
S. V. VISCIDO, M. MILLER AND D. S. WETHEY, The paradox of the selfish herd: the search for a realistic movement rule, J. Theor. Biol. to appear, 2002.]]
[215]
S. V. VISCIDO, M. MILLER AND D. S. WETHEY, Group foraging: coincidental gathering or local enhancement, submitted, 2002.]]
[216]
E. O. VOIT, Computational analysis of biochemical systems, Cambridge University Press, 2000.]]
[217]
D. VOSE, Risk Analysis 2nd ed., Wiley, 2000.]]
[218]
H. D. WACTLAR AND M. P. BARNETT, Mechanization of tedious algebra --- the e coefficients of theoretical chemistry, Comm. ACM, 7 (12) 704--710, 1964.]]
[219]
L. WALLER AND A. LAWSON, The power of focused tests to detect disease clustering, Stat. Med. 14 (21--22) 2291--2308, 1995.]]
[220]
L. WALLER, B. TURNBULL AND J. HARDIN, Obtaining distribution-functions by numerical inversion of characteristic functions with applications, Am. Stat. 49 (4) 346--350, 1995.]]
[221]
B. S. WEIR, Genetic Data Analysis, II, Sinauer, 1996.]]
[222]
I. D. WICKHAM, G. C. WAKE, S. J. R. WOODWARD AND B. S. THORROLD, Dynamical systems modeling of the interactions of animal stocking density and soil fertility in grazed pasture, J. App. Math. Decision Sci., 1(1) 27--43, 1997.]]
[223]
M. A. VAN DE WIEL, A. DI BUCCHIANICO AND P. VAN DER LAAN, Symbolic computation and exact distributions of nonparametric test statistics, Statistician, 48 (4) 507--516, 1999.]]
[224]
A. WILLIAMS AND G. JEFFERY, Growth dynamics of the developing lateral geniculate nucleus, J. Comp. Neurol. 430 (3) 332--342, 2001.]]
[225]
S. WOLFRAM, The Mathematica Book, 4th ed. Cambridge University Press, 1999.]]
[226]
S. J. R. WOODWARD, A multi-variable optimal control problem in fertilizer economics, accessed from {242}.]]
[227]
E. K. YEARGERS, R. W. SHONKWILER AND J. V. HEROD, An introduction to the mathematics of biology: with computer algebra models, Birkhäuser, 1996.]]
[228]
N. YILDIRIM, Application of Gröbner bases theory to derive steady state rate equations in biochemical kinetic theory, accessed from {242}.]]
[229]
N. YILDIRIM AND M. BAYRAM, Analysis of the kinetics of unstable enzymatic systems usingMAPLE, (Abstract). App. Math. Comp. 112 (1), 41--48, 2000.]]
[230]
N. YILDIRIM AND M. BAYRAM, Derivation of conservation relationships for metabolic networks UsingMAPLE, (Abstract). App. Math. Comp. 112 (2--3) 255--263, 2000.]]
[231]
N. YILDIRIM, M. CIFTCI AND O. I. KUFREVIOGLU, Kinetic analyses of multi-enzyme systems: a case study of the closed system of creatine kinase, hexokinase and glucose 6-phosphate dehydrogenase, J. Math. Chem. 31 (1) 121--130, 2002.]]
[232]
N. YILDIRIM, D. YILDIRIM AND F. AKCAY, Application of Gröbner basis theory to derive rate equations for reactions with more than one substrate or product, Applied Math. Comp. in press, 2002.]]
[233]
N. P. YUSHKIN, Natural polymer crystals of hydrocarbons as models of prebiological organisms, J. Cryst. Growth, 167 (1--2) 237--247, 1996.]]
[234]
S.-R. ZHAO, J. GROTENDORST AND H. HALLING, Calculation of the potential distribution for a three-layer spherical volume conductor, MAPLE Technical Newsletter, 2 (1) 59--66, 1995.]]
[235]
Q. ZHENG, On the MVK stochastic carcinogenesis model with Erlang distributed cell life lengths, Risk Analysis, 15 (4), 495--502, 1995.]]
[236]
Q. ZHENG, Computer algebra is indispensable in some problems of mathematical biology, Math. Biosci. 151 (2) 219--225, 1998.]]
[237]
Q. ZHENG, Automating the computation of cumulants of stochastic population processes, in K. BERK AND M. POURAHMADI, eds. Computing science and statistics, Proceedings of the 31st symposium on the interface --- models, predictions and computing, 328--333, Interface Foundation of North America, 1999.]]
[238]
Q. ZHENG, On the dispersion index of a Markovian molecular clock, Math. Biosci. 172 (2) 115--128, 2001.]]
[239]
Q. ZHENG, Computing relations between moments and cumulants, Comp. Stat. in press, 2002.]]
[240]
see {37} p. 8.]]
[241]
http://www.mapleapps.com.]]
[242]
link "biology" under "science" in {241}.]]
[243]
http://www.mathsource.com/Content/Applications.]]
[244]
http://www.mathStatica.com.]]
[245]
http://www.mapleapps.com/powertools/statisticssupplement/stats_supplement.shtml.]]
[246]
http://www.math.uni-frankfurt.de]]
[247]
http://www.math.uni-frankfurt.de/~grueneden/papers/maplesde.html.]]
[248]
http://www.math.uni-frankfurt.de/~numerik/kloeden/maplsede.]]
[249]
http://www.math.uni-frankfurt.de/~numerik/maplestoch.]]
[250]
http://www.phylogeny.arizona.edu/tree/phylogeny.html.]]
[251]
http://www.utstat.utoronto.ca/~stafford/papers.html.]]
[252]
http://www.utstat.toronto.edu/david/home.html.]]
[253]
http://www.stats.uwo.ca/mcleod/epubs/mele.]]
[254]
www.math.sc.edu/~miller.]]
[255]
http://www.warwick.ac.uk/statsDept/Staff/WSK.]]

Cited By

View all
  • (2018)IntroductionComputer Algebra and Materials Physics10.1007/978-3-319-94226-1_1(1-5)Online publication date: 27-Jun-2018
  • (2018)Past, Present, and Future Programs for Reaction KineticsReaction Kinetics: Exercises, Programs and Theorems10.1007/978-1-4939-8643-9_12(345-357)Online publication date: 19-Sep-2018
  • (2015)More Power through Symbolic Computation: Extending Stata by using the Maxima Computer algebra systemThe Stata Journal: Promoting communications on statistics and Stata10.1177/1536867X150150010415:1(45-76)Online publication date: 1-Apr-2015
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGSAM Bulletin
ACM SIGSAM Bulletin  Volume 36, Issue 4
December 2002
32 pages
ISSN:0163-5824
DOI:10.1145/641239
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 December 2002
Published in SIGSAM Volume 36, Issue 4

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2018)IntroductionComputer Algebra and Materials Physics10.1007/978-3-319-94226-1_1(1-5)Online publication date: 27-Jun-2018
  • (2018)Past, Present, and Future Programs for Reaction KineticsReaction Kinetics: Exercises, Programs and Theorems10.1007/978-1-4939-8643-9_12(345-357)Online publication date: 19-Sep-2018
  • (2015)More Power through Symbolic Computation: Extending Stata by using the Maxima Computer algebra systemThe Stata Journal: Promoting communications on statistics and Stata10.1177/1536867X150150010415:1(45-76)Online publication date: 1-Apr-2015
  • (2013)Norwegian cleaning research: an overview and categorizationFacilities10.1108/0263277131131745731:7/8(290-313)Online publication date: 17-May-2013
  • (2009)Polynomial Optimization Problems are Eigenvalue ProblemsModel-Based Control:10.1007/978-1-4419-0895-7_4(49-68)Online publication date: 15-Jul-2009
  • (2008)Chemical calculations and chemicals that might calculateInternational Journal of Quantum Chemistry10.1002/qua.21969109:8(1640-1657)Online publication date: 23-Dec-2008
  • (2007)Algorithmic algebraic model checking IVProceedings of the 2nd international conference on Algebraic biology10.5555/1769026.1769039(170-184)Online publication date: 2-Jul-2007
  • (2007)Buchberger's Algorithm and the Two-Locus, Two-Allele ModelSIAM Review10.1137/05062672749:3(421-433)Online publication date: 1-Jul-2007
  • (2007)Algorithmic Algebraic Model Checking IV: Characterization of Metabolic NetworksAlgebraic Biology10.1007/978-3-540-73433-8_13(170-184)Online publication date: 2007
  • (2006)SYMBOLIC-NUMERIC ESTIMATION OF PARAMETERS IN BIOCHEMICAL MODELS BY QUANTIFIER ELIMINATIONJournal of Bioinformatics and Computational Biology10.1142/S021972000600235104:05(1097-1117)Online publication date: Oct-2006
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media