Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/774572.774640acmconferencesArticle/Chapter ViewAbstractPublication PagesiccadConference Proceedingsconference-collections
Article

Fast methods for simulation of biomolecule electrostatics

Published: 10 November 2002 Publication History

Abstract

Computer simulation is an important tool for improving our understanding of biomolecule electrostatics, in part to aid in drug design. However, the numerical techniques used in these simulation tools do not exploit fast solver approaches widely used in analyzing integrated circuit interconnects. In this paper we describe one popular formulation used to analyze biomolecule electrostatics, present an integral formulation of the problem, and apply the precorrected-FFT method to accelerate the solution of the integral equations.

Supplementary Material

ZIP File (a466-kuo.zip)
Presentations from the 2002 ICCAD conference: Emerging technologies

References

[1]
M. K. Gilson, A. Rashin, R. Fine, and B. Honig. On the calculation of electrostatic interactions in proteins. Journal of Molecular Biology, 183:503--516, 1985.
[2]
K. A. Sharp and B. Honig. Electrostatic interactions in macromolecules: Theory and applications. Annual Review of Biophysics and Biophysical Chemistry, 19:301--332, 1990.
[3]
M. E. Davis and J. A. McCammon. Electrostatics in biomolecular structure and dynamics. Chem. Rev., 90:509--521, 1990.
[4]
J. A. Grant, B. T. Pickup, and A. Nicholls. A smooth permittivity function for Poisson-Boltzmann solvation methods. Journal of Computational Chemistry, 22:608--640, 2001.
[5]
L. P. Lee and B. Tidor. Barstar is electrostatically optimized for tight-binding to barnase. Nature Structural Biology, 8:73--76, 2001.
[6]
L. Lee and B. Tidor. Optimization of binding electrostatics: Charge complementarity in the barnase-barstar protein complex. Protein Science, 10:362--377, 2001.
[7]
E. Kangas and B. Tidor. Electrostatic specificity in molecular ligand design. Journal of Chemical Physics, 112:9120--9131, 2000.
[8]
E. Kangas and B. Tidor. Electrostatic complementarity at ligand binding sites: Application to chorismate mutase. Journal of Physical Chemistry, 105:880--888, 2001.
[9]
Z. S. Hendsch, M. J. Nohaile, R. T. Sauer, and B. Tidor. Preferential heterodimer formation via undercompensated electrostatic interactions. Journal of the American Chemical Society, 123:1264--1265, 2001.
[10]
V. Lounnas, B. M. Pettitt, L. Findsen, and S. Subramaniam. A microscopic view of protein solvation. Journal of Physical Chemistry, 18:7157--7159, 1992.
[11]
J. A. McCammon and S. C. Harvey. Dynamics of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, 1987.
[12]
C. L. Brooks, III, M. Karplus, and B. M Pettitt. Proteins: A theoretical perspective of dynamics, structure and thermodynamics. Adv. Chem. Phys., 71:1--249, 1988.
[13]
A. Jean-Charles, A. Nicholls, K. Sharp, B. Honig, A. Tempczyk, T. F. Hendrickson, and W. C. Still. Electrostatic contributions to solvation energies: Comparison of free energy perturbation and continuum calculations. J. Am. Chem. Soc., 113:1454--1455, 1991.
[14]
S. W. Rick and B. J. Berne. The aqueous solvation of water: A comparison of continuum methods with molecular dynamics. J. Am. Chem. Soc., 116:3949--3954, 1994.
[15]
C. Tanford and J. G. Kirkwood. Theory of protein titration curves I. general equations for impenetrable spheres. Journal of the American Chemical Society, 59:5333--5339, 1957.
[16]
B. Honig and A. Nicholls. Classical electrostatics in biology and chemistry. Science (Washington, D.C.), 268:1144--1149, 1995.
[17]
J. Warwicker and H. C. Watson. Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. Journal of Molecular Biology, 157:671--679, 1982.
[18]
J. D. Madura, J. M. Briggs, R. C. Wade, M. E. Davis, B. A. Luty, A. Ilin, J. Antosiewicz, M. K. Gilson, B. Bagheri, L. Ridgway-Scott, and J. A. McCammon. Electrostatics and diffusion of molecules in solution: Simulations with the University of Houston Brownian Dynamics program. Computer Physics Communications, 91:57--95, 1995.
[19]
I. Klapper, R. Hagstrom, R. Fine, K. Sharp, and B. Honig. Focusing of electric fields in the active site of Cu-Zn superoxide dismutase: Effects of ionic strength and amino-acid modification. Proteins: Structure, Function, Genetics, 1:47--59, 1986.
[20]
M. K. Gilson, K. A. Sharp, and B. H. Honig. Calculating the electrostatic potential of molecules in solution: Method and error assessment. Journal of Computational Chemistry, 9:327--335, 1987.
[21]
A. Nicholls and B. Honig. A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson-Boltzmann equation. Journal of Computational Chemistry, 12:435--445, 1991.
[22]
W. Rocchia, E. Alexov, and B. Honig. Extending the applicability of the nonlinear Poisson-Boltzmann equation: Multiple dielectric constants and multivalent ions. Journal of Physical Chemistry B, 105:6507--6514, 2001.
[23]
W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera, and B. Honig. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects. Journal of Computational Chemistry, 23:128--137, 2002.
[24]
V. Rokhlin. Rapid solution of integral equation of classical potential theory. Journal of Computational Physics, 60:187--207, 1985.
[25]
L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of Chemical Physics, 73:325--348, 1987.
[26]
K. Nabors and J. White. FASTCAP: A multipole accelerated 3-D capacitance extraction program. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 10:1447--1459, 1991.
[27]
B. J. Yoon and A. M. Lenhoff. A boundary element method for molecular electrostatics with electrolyte effects. Journal of Computational Chemistry, 11:1080--1086, 1990.
[28]
J. R. Phillips and J. K. White. A precorrected-FFT method for electrostatic analysis of complicated 3-D structures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 16:1059--1072, 1997.
[29]
F. M. Richards. Areas, volumes, packing, and protein structure. Annual Review of Biophysics and Bioengineering, 6:151--176, 1977.
[30]
M. L. Connolly. Analytical molecular surface calculation. Journal of Applied Crystallography, 16:548--558, 1983.
[31]
R. W. Hockney and J. W. Eastwood. Computer simulation using particles. Adam Hilger, 1988.
[32]
N. K. Rogers and M. J. Sternberg. Journal of Molecular Biology, 174:527, 1984.
[33]
Z. Zhou, P. Payne, M. Vasquez, N. Kuhn, and M. Levitt. Finite-difference solution of the Poisson--Boltzmann equation: Complete elimination of self-energy. J. Comput. Chem., 11:1344--1351, 1996.
[34]
R. J. Zauhar and R. S. Morgan. The rigorous computation of the molecular electric potential. Journal of Computational Chemistry, 9:171--187, 1988.
[35]
A. H. Juffer, E. F. F. Botta, B. A. M. Van Keulen, A. V. D. Ploeg, and H. J. C. Berendsen. The electric potential of a macromolecule in a solvent: A fundamental approach. Journal of Computational Physics, 97:144--171, 1991.
[36]
R. Bharadwaj, A. Windemuth, S. Sridharan, B. Honig, and A. Nicholls. The fast multipole boundary element method for molecular electrostatics: An optimal approach for large systems. Journal of Computational Chemistry, 16:898--913, 1995.
[37]
R. J. Zauhar and A. Varnek. A fast and space-efficient boundary element method for computing electrostatic and hydration effects in large molecules. Journal of Computational Chemistry, 17:864--877, 1996.
[38]
M. O. Fenley, W. K. Olson, K. Chua, and A. H. Boschitsch. Fast adaptive multipole method for computation of electrostatic energy in simulations of polyelectrolyte DNA. Journal of Computational Chemistry, 17:976--991, 1996.
[39]
I. Stakgold. Boundary Value Problems of Mathematical Physics. MacMillan, 1967.
[40]
R. F. Harrington. Field Computation by Moment Methods. MacMillan, 1968.
[41]
Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal of Scientific and Statistical Computing, 7:856--869, 1986.
[42]
L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press, 1988.
[43]
J. G. Kirkwood. Theory of solutions of molecules containing widely separated charges with special application to zwitterions. Journal of Chemical Physics, 2:351, 1934.
[44]
Matlab v.6. Mathworks, Inc.
[45]
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein. Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79:926--935, 1983.
[46]
M. Sanner, A. J. Olson, and J. C. Spehner. Reduced surface: An efficient way to compute molecular surfaces. Biopolymers, 38:305--320, 1996.

Cited By

View all
  • (2014)Boundary-Integral and Boundary-Element Methods for Biomolecular Electrostatics: Progress, Challenges, and Important Lessons from CEBA 2013Computational Electrostatics for Biological Applications10.1007/978-3-319-12211-3_6(121-141)Online publication date: 30-Nov-2014
  • (2009)“Reverse-Schur” Approach to Optimization with Linear PDE Constraints: Application to Biomolecule Analysis and DesignJournal of Chemical Theory and Computation10.1021/ct90011745:12(3260-3278)Online publication date: 30-Oct-2009
  • (2009)An Adaptive Fast Multipole Boundary Element Method for Poisson−Boltzmann ElectrostaticsJournal of Chemical Theory and Computation10.1021/ct900083k5:6(1692-1699)Online publication date: 21-May-2009
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ICCAD '02: Proceedings of the 2002 IEEE/ACM international conference on Computer-aided design
November 2002
793 pages
ISBN:0780376072
DOI:10.1145/774572
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 10 November 2002

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

ICCAD02
Sponsor:

Acceptance Rates

Overall Acceptance Rate 457 of 1,762 submissions, 26%

Upcoming Conference

ICCAD '24
IEEE/ACM International Conference on Computer-Aided Design
October 27 - 31, 2024
New York , NY , USA

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Aug 2024

Other Metrics

Citations

Cited By

View all
  • (2014)Boundary-Integral and Boundary-Element Methods for Biomolecular Electrostatics: Progress, Challenges, and Important Lessons from CEBA 2013Computational Electrostatics for Biological Applications10.1007/978-3-319-12211-3_6(121-141)Online publication date: 30-Nov-2014
  • (2009)“Reverse-Schur” Approach to Optimization with Linear PDE Constraints: Application to Biomolecule Analysis and DesignJournal of Chemical Theory and Computation10.1021/ct90011745:12(3260-3278)Online publication date: 30-Oct-2009
  • (2009)An Adaptive Fast Multipole Boundary Element Method for Poisson−Boltzmann ElectrostaticsJournal of Chemical Theory and Computation10.1021/ct900083k5:6(1692-1699)Online publication date: 21-May-2009
  • (2008)A meshless, spectrally accurate, integral equation solver for molecular surface electrostaticsACM Journal on Emerging Technologies in Computing Systems10.1145/1350763.13507664:2(1-30)Online publication date: 23-Apr-2008
  • (2007)"New-version-fast-multipole-method" accelerated electrostatic calculations in biomolecular systemsJournal of Computational Physics10.1016/j.jcp.2007.05.026226:2(1348-1366)Online publication date: 1-Oct-2007
  • (2006)A spectrally accurate integral equation solver for molecular surface electrostaticsProceedings of the 2006 IEEE/ACM international conference on Computer-aided design10.1145/1233501.1233689(899-906)Online publication date: 5-Nov-2006
  • (2006)Computationally efficient technique for nonlinear poisson-boltzmann equationProceedings of the 6th international conference on Computational Science - Volume Part I10.1007/11758501_123(860-863)Online publication date: 28-May-2006
  • (2006)FFTSVD: A FAST MULTISCALE BOUNDARY ELEMENT METHOD SOLVER SUITABLE FOR BIO-MEMS AND BIOMOLECULE SIMULATIONDesign Automation Methods and Tools for Microfluidics-Based Biochips10.1007/1-4020-5123-9_6(143-168)Online publication date: 2006

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media