Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article
Free access

Algorithm 679: A set of level 3 basic linear algebra subprograms: model implementation and test programs

Published: 01 March 1990 Publication History

Abstract

This paper describes a model implementation and test software for the Level 3 Basic Linear Algebra Subprograms (Level3 BLAS). The Level3 BLAS are targeted at matrix-matrix operations with the aim of providing more efficient, but portable, implementations of algorithms on high-performance computers. The model implementation provides a portable set of Fortran 77 Level 3 BLAS for machines where specialized implementations do not exist or are not required. The test software aims to verify that specialized implementations meet the specification of the Level 3 BLAS and that implementations are correctly installed.

Supplementary Material

Level 3 BLAS (679.gz) (679.gz)
basic linear algebra Gams: D1b

References

[1]
DEMMEL, J. W., DONGARRA, J. J., DU CROZ, J., GREENBAUM, A., HAMMARLING, S., AND SORENSEN, D. Prospectus for the development of a linear algebra library for high-performance computers. Argonne National Laboratory Report, ANL-MCS-TM-97, Argonne, Ill., Sept. 1987.
[2]
DONGARRA, J. J., AND GROSSE, E. Distribution of mathematical software via electronic mail. Commun. ACM 30, 5 (May 1987), 403-407.
[3]
DONGARRA, J. J., GUSTAVSON, F., AND KARP, A. Implementing linear algebra algorithms for dense matrices on a vector pipeline machine. SIAM Rev. 26, 1 (Jan. 1984), 91-112.
[4]
DONGARRA, J. J., DU CROZ, J., DUFF, }., AND HAMMARLING, S. A set of level 3 basic linear algebra subprograms. This issue, pp. 1-17.
[5]
DONGARRA, J. J., Du CROZ, J., HAMMARLING, S., AND HANSON, R. An extended set of fortran basic linear algebra subprograms. ACM Trans. Math Softw. I4, 1 (Mar. 1988), 1-17.
[6]
DONGARRA, J. J., Du CROZ, J., HAMMARLING, S., AND HANSON, R. Algorithm 656: An extended set of basic linear algebra subprograms: Model implementation and test programs. ACM Trans. Math. Softw. 14, 1 (Mar. 1988), 18-32.

Cited By

View all
  • (2024)HPS Cholesky: Hierarchical Parallelized Supernodal Cholesky with Adaptive ParametersACM Transactions on Parallel Computing10.1145/363005111:1(1-22)Online publication date: 11-Mar-2024
  • (2024)Batched sparse and mixed-precision linear algebra interface for efficient use of GPU hardware accelerators in scientific applicationsFuture Generation Computer Systems10.1016/j.future.2024.06.004160(359-374)Online publication date: Nov-2024
  • (2023)A parallel numerical algorithm by combining MPI and OpenMP programming models with applications in gravity field recoveryFrontiers in Earth Science10.3389/feart.2023.108087911Online publication date: 23-Mar-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 16, Issue 1
March 1990
109 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/77626
  • Editor:
  • John A. Rice
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 March 1990
Published in TOMS Volume 16, Issue 1

Permissions

Request permissions for this article.

Check for updates

Badges

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)112
  • Downloads (Last 6 weeks)18
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)HPS Cholesky: Hierarchical Parallelized Supernodal Cholesky with Adaptive ParametersACM Transactions on Parallel Computing10.1145/363005111:1(1-22)Online publication date: 11-Mar-2024
  • (2024)Batched sparse and mixed-precision linear algebra interface for efficient use of GPU hardware accelerators in scientific applicationsFuture Generation Computer Systems10.1016/j.future.2024.06.004160(359-374)Online publication date: Nov-2024
  • (2023)A parallel numerical algorithm by combining MPI and OpenMP programming models with applications in gravity field recoveryFrontiers in Earth Science10.3389/feart.2023.108087911Online publication date: 23-Mar-2023
  • (2023)Massively Digitized Power Grid: Opportunities and Challenges of Use-Inspired AIProceedings of the IEEE10.1109/JPROC.2022.3175070111:7(762-787)Online publication date: Jul-2023
  • (2023)Efficient parallel reduction of bandwidth for symmetric matricesParallel Computing10.1016/j.parco.2023.102998115(102998)Online publication date: Feb-2023
  • (2022)The evolution of mathematical softwareCommunications of the ACM10.1145/355497765:12(66-72)Online publication date: 22-Nov-2022
  • (2022)Producing competent HPC graduatesCommunications of the ACM10.1145/353887865:12(56-65)Online publication date: 22-Nov-2022
  • (2022)Algorithm 1022: Efficient Algorithms for Computing a Rank-Revealing UTV Factorization on Parallel Computing ArchitecturesACM Transactions on Mathematical Software10.1145/350746648:2(1-42)Online publication date: 26-May-2022
  • (2022)Jack, The AutotunerComputing in Science & Engineering10.1109/MCSE.2022.321261424:4(24-27)Online publication date: 1-Jul-2022
  • (2022)Opportunities for using eye tracking technology in manufacturing and logisticsComputers and Industrial Engineering10.1016/j.cie.2022.108444171:COnline publication date: 1-Sep-2022
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media