Citation: | Carmen Ionescu, Radu Constantinescu, Mihail Stoicescu. FUNCTIONAL EXPANSIONS FOR FINDING TRAVELING WAVE SOLUTIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 569-583. doi: 10.11948/20180314 |
FUNCTIONAL EXPANSIONS FOR FINDING TRAVELING WAVE SOLUTIONS
-
Abstract
The paper proposes a generalized analytic approach which allows to find traveling wave solutions for some nonlinear PDEs. The solutions are expressed as functional expansions of the known solutions of an auxiliary equation. The proposed formalism integrates classical approaches as tanh method or $G^{\prime }/G$ method, but it open the possibility of generating more complex solutions. A general class of second order PDEs is analyzed from the perspective of this formalism, and clear rules related to the balancing procedure are formulated. The KdV equation is used as a toy model to prove how the results obtained before through the $G^{\prime }/G$ approach can be recovered and extended, in an unified and very natural way. -
-
References
[1] M. A. Abdelkawy, A. H. Bhrawy, E. Zerrad and A. Biswas, Application of tanh method to complex coupled nonlinear evolution equations, Acta Physica Polonica A, 2016, 129(3), 278-283. doi: 10.12693/APhysPolA.129.278 [2] M. J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991. [3] M. A. Akbar, N. H. Ali and E. M. E. Zayed, A generalized and improved-expansion method for nonlinear evolution equations, Mathematical Problems in Engineering, 2012. DOI: 10.1155/2012/459879. [4] A. F. Aljohani, R. Rach and E. El-Zahar, A.M. Wazwaz and A. Ebaid, Solution of the hyperbolic Kepler equation by Adomian's asymptotic decomposition method, Romanian Reports in Physics, 2018, 70(2), 112-126. [5] A. Babalean, R. Constantinescu and C. Ionescu, Non-minimal BRST terms for Yang-Mills theory, Journal of Physics A: Mathematical and General, 1998, 31 (43), 8653-8659. doi: 10.1088/0305-4470/31/43/008 [6] A. Babalean, R. Constantinescu and C. Ionescu, The gauge fixing problem in the sp(3) BRST canonical formalism, Journal of Physics A: Mathematical and General, 1999, 32(16), 3005-3012. doi: 10.1088/0305-4470/32/16/009 [7] C. N. Babalic and A. S. Carstea, Coupled Ablowitz-Ladik equations with branched dispersion, Journal of Physics A: Mathematical and Theoretical, 2017, 50(41), Article Number: 415201. [8] S. Bhalekar and J. Patade, An analytical solution of Fisher's equation using decomposition method, American Journal of Computational and Applied Mathematics, 2016. DOI: 10.5923/j.ajcam.20160603.01. [9] R. Cimpoiasu and A. S Pauna, Complementary wave solutions for the long-short wave resonance model via the extended trial equation method and the generalized Kudryashov method, Open Physics, 2018, 16(1), 419-426. doi: 10.1515/phys-2018-0057 [10] J. D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quarterly of Applied Mathematics, 1951, 9(3), 225-236. doi: 10.1090/qam/42889 [11] R. Constantinescu and C. Ionescu, Hot quark-gluon plasma and Chapline-Manton model, Romanian Journal of Physics, 2011, 56(1-2), 53-61. [12] R. Constantinescu and C. Ionescu, The Yang-Mills fields--from the gauge theory to the mechanical model, Central European Journal of Physics, 2009, 7(4), 711-720. [13] S. Guo and Y. Zhou, The extended (G'/G)-expansion method and its applications to the Whitham-Broer-Kaup-Like equations and coupled Hirota-Satsuma KdV equations, Applied Mathematics and Computation, 2010, 215(9), 3214-3221. doi: 10.1016/j.amc.2009.10.008 [14] T. Harko and M. K. Mak, Exact travelling wave solutions of non-linear reaction-convection-diffusion equations--An Abel equation based approach, Journal of Mathematical Physics, 2015. https://doi.org/10.1063/1.4935299. [15] J. He and X. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 2006, 30(3), 700-708. doi: 10.1016/j.chaos.2006.03.020 [16] R. Hirota, Exact solution of the Korteweg--de Vries equation for multiple collisions of solitons, Physical Review Letters, 1971, 27(18), 1192-1194. doi: 10.1103/PhysRevLett.27.1192 [17] Md. Azmol Huda, Md. Samsuzzoha and M. Ali Akbar, Searching soliton solutions to the Burger Huxley and the Klein Gordon equations, Global Journal of Advanced Research (Scholary Peer Review Publishing System), 2019, 6(2), 67-77. [18] W. Li, H. Chen and G. Zhang, The ($\omega/g$)-expansion method and its application to Vakhnenko equation, Chinese Physics B, 2009, 18(2), 400-404. [19] L. Li and M. Wang, The G'/G-expansion method and travelling wave solutions for a higher-order nonlinear Schrödinger equation, Applied Mathematics Computational, 2009, 208(2), 440-445. [20] S. Liu, Z. Fu, S. Liu and Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Physics Letters A, 2001, 289(1-2), 69-74. doi: 10.1016/S0375-9601(01)00580-1 [21] W. Malfliet, Solitary wave solutions of nonlinear wave equations, American Journal of Physics, 1992, 60, 650-654. doi: 10.1119/1.17120 [22] H. Naher and F. A. Abdullah, Further extension of the generalized and improved (G'/G)-expansion method for nonlinear evolution equation, Journal of the Association of Arab Universities for Basic and Applied Sciences, 2016, 19, 52-58. [23] M. Negrea, I. Petrisor and D. Constantinescu, Aspects of the Diffusion of Electrons and Ions in Tokamak Plasma, Romanian Journal of Physics, 2010, 55 (9-10), 1013-1023. [24] I. Petrisor, Some statistical features of particle dynamics in tokamak plasma, Romanian Journal of Physics, 2016, 61(1-2), 217-234. [25] A. R. Shehata and Safaa Abu-Amra, Traveling wave solutions for some nonlinear partial differential equations by using modified (w/g)-expansion method, European Journal of Mathematical Sciences, 2018, 4(2), 35-58. [26] M. Wang and X. Li, Application of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation, Chaos, Solitons and Fractals, 2005, 24, 1257-1268. doi: 10.1016/j.chaos.2004.09.044 [27] M. Wang, X. Li and J. Zhang, The (G'/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 2008, 372, 417-423. doi: 10.1016/j.physleta.2007.07.051 [28] A. M. Wazwaz, The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations, Applied Mathematics and Computation, 2007, 188(2), 1467-1475. doi: 10.1016/j.amc.2006.11.013 [29] Z. Yan and H. Zhang, New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water, Physics Letters A, 2001, 285(5-6), 355-362. doi: 10.1016/S0375-9601(01)00376-0 [30] J. Zhang, F. Jiang and X. Zhao, An improved (G'/G)-expansion method for solving nonlinear evolution equations, International Journal of Computer Mathematics, 2010, 87(8), 1716-1725. doi: 10.1080/00207160802450166 [31] S. Zhang, A generalized auxiliary equation method and its application to the (2+1)-dimensional KdV equations, Applied Mathematics and Computation, 2007, 188(1), 1-6. -
-